
zoo Design

zoo Development Team

Abstract

This is a set of design principles that – albeit not having been explicitly set out initially
– have guided the development of the R zoo package.

Keywords: irregular time series, ordered observations, time index.

zoo works with any ordered index class having the prescribed methods, see ?zoo and Zeileis
and Grothendieck (2005). Specific index classes are not hard-coded in functions (with a few
exceptions necessitated by external interfaces such as reading and interfacing with ‘ts’) but
rather all index operations are only done via the allowed methods.

zoo is invisible. As far as possible new names (e.g., for functions or methods and their
arguments) are not introduced. New functionality is added as methods to generics from base
R allowing reuse of those names. When names are added, thought is put into the name
since zoo is so miserly about adding them. For example, the read.zoo name is obviously
derived from read.table and the names na.locf or na.approx are in analogy to other na.*
functions frome base R.

zoo is consistent with base R. The idea is to make the usage of zoo completely natural to
someone who already has experience with R (in particular with the ‘ts’ class). Certainly, zoo
contains extensions to base R, but they should be as consistent as possible and have a natural
‘look and feel’.

zoo is infrastructure. zoo tries to do basic things well, e.g., data reading, handling, ag-
gregation, transformation, etc. However, it does not provide time series modeling function-
ality – zoo rather encourages add-on packages. A list of current packages employing zoo

can be found on the Comprehensive R Archive Network (CRAN) and in the zoo FAQ, see
vignette("zoo-faq", package = "zoo").

zoo interfaces to all other time series packages on CRAN (or at least all of the more popular
ones and some of the relatively unknown ones as well). Thus, time series information can be
passed back and forth relatively easily between ‘zoo’ and other time series classes and hence
combinations of various functionalities are facilitated.

zoo includes extensive documentation. In addition to the standard help() pages, zoo pro-
vides a set of vignettes, see vignette(package = "zoo") for a list. Furthermore, the zoo

Development Team members also post frequently on the mailing lists (especially “R-help”,
“R-devel”, and “R-SIG-Finance”) whose archives hence contain many useful code snippets etc.

zoo has no bug list since all bugs are fixed (almost) immediately. Over the last years, zoo has
grown into a mature package. Nevertheless, there are always still bugs (or border cases that
are not handled well). When reported to the development team by e-mail, these typically get
fixed immediately in the Subversion (SVN) repository on R-Forge. (As of this writing, there



2 zoo Design

are a couple of entries in the zoo R-Forge bug list, however typically this is not the situation.)

zoo includes formal regression testing. We have started developing formal regression tests
employing R’s own system (in zoo/tests/) as well as the RUnit package (Burger, Jünemann,
and König 2015).

References

Burger M, Jünemann K, König T (2015). RUnit: R Unit Test Framework. R package version
0.4.31, URL https://CRAN.R-project.org/package=RUnit.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL 10.18637/jss.v014.i06.

Affiliation:

zoo Development Team
R-Forge: http://R-Forge.R-project.org/projects/zoo/
Comprehensive R Archive Network: http://CRAN.R-project.org/package=zoo


