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Summary

In this paper, we first explain the statistical model underlying the ordinal regression
technique used by Pollet and Nettle (2009), including the two possible ways of calculat-
ing the likelihood function (section 1). We then show that the model fit criteria reported
were in fact invalid, and calculate the correct ones, showing that this leads to a different
choice of best model (section 2). We then suggest two other strategies of model selection
for these data, and show that these also lead to different best-fitting models than that
reported by Pollet and Nettle (2009) (sections 3 and 4).

1 Ordinal regression: The cumulative Logit Model

The appropriate model for a dependent variable Yi ∈ {1, . . . , R}, i = 1, . . . , n, consisting
of ranked outcome categories is a cumulative logit model (Agresti, 2002):

P (Yi ≤ r|xi) =
exp(β0r − x⊤i β)

1 + exp(β0r − x⊤i β)
, r = 1, . . . , R− 1.

The model includes intercepts β0r for each category and a global parameter vector
β = (β1, . . . , βp) for the p covariates.
To obtain parameter estimates the maximum-likelihood method is used. The responses
are conditionally independent and follow a multinomial distribution with

yi|xi ∼ M(1, πi),

yi = (yi1, . . . , yiR−1) = (0, . . . , 0, 1
︸︷︷︸

r−th position

, 0, . . . , 0) ⇔ Yi = r,

πi = (πi1, . . . , πiR−1) with

πir = P (Yi = r|xi) = P (Yi ≤ r|xi)− P (Yi ≤ r − 1|xi), r = 1, . . . , R− 1.

The associated likelihood function is

L(β01, . . . β0R−1, β;x1, . . . xn) =
n∏

i=1

πi1
yi1 · πi2yi2 · . . . · (1− πi1 − . . .− πiR−1)

1−yi1−...−yiR−1 .
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To obtain the parameter estimates, the data are often (as by default in SPSS 15.0)
pooled in K groups, and the likelihood of the grouped data is maximized, instead of the
likelihood of the individual data. Group k, k = 1, . . .K, includes all hk observations
with the value x̃k = (x̃k1, . . . , x̃kp) of the covariates x = (x1, . . . , xp). The responses
again follow a multinomial distribution:

ỹk|x̃k ∼ M(hk, π̃k),

ỹk = (ỹk1, . . . , ỹkR−1),

π̃k = (π̃k1, . . . , π̃kR−1).

The vector ỹk contains the observed frequencies of the categories 1 to R − 1 in group
k. π̃kr is the probability of an individual of group k being in category r. The likelihood
function of the grouped data results in

L(β01, . . . β0R−1, β; x̃1, . . . x̃K) =
K∏

k=1

hk!

ỹk1! · . . . · ỹkR−1

︸ ︷︷ ︸

multinomial constant

·
K∏

k=1

π̃k1
ỹk1 · π̃k2ỹk2 · . . . · (1− π̃k1 − . . .− π̃kR−1)

1−ỹk1...−ỹkR−1

︸ ︷︷ ︸

kernel

.

The kernel of the likelihood function of the grouped data equals the likelihood function
of the individual data. Both likelihood functions only differ by the multinomial constant
in the likelihood for grouped data. Maximization of both likelihood functions results in
the same parameter estimates.

2 Variable Selection according to Pollet and Nettle

The analytical strategy of Pollet and Nettle (2009) was as follows:
Start: Inclusion of partner income and partner height as independent variables.
Step 1: Omission of any independent variable not significant in the start model. Signif-
icance is assessed by the Wald test without adjusting for multiplicity.
Subsequent steps: Stepwise inclusion of the remaining variables in the order in which
they improve model fit the most compared to the start model. The procedure stops,
when model fit cannot be improved further by including another covariate.

Model fit was assessed by the criteria AIC and BIC:

AIC = −2 · ℓ(θ̂) + 2 · dim(θ),

BIC = −2 · ℓ(θ̂) + log(n) · dim(θ).

ℓ denotes the logarithmized likelihood function. In the cumulative logit model the
parameter vector θ is θ = (β01, . . . , β0R−1, β1, . . . , βp).

In SPSS 15.0, the likelihood function for multinomial distributed responses is calcu-
lated by pooling the data according to the covariates (see above). Parameter estimates
are the same whether they are obtained by maximization of the likelihood function for
individual or grouped data. To compare several models, which differ in terms of their
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Start Step 1 Step 2

Partner income
√ √ √

Partner height
√1

— —
Happiness — —

√

Calculations by Pollet and Nettle (2009):

−2 · ℓ(θ̂) 1868.1 405.6 752.4
dim(θ) 2 1 4
AIC 1872.1 407.6 760.42

BIC 1882.8 412.9 781.72

Correct calculations:

−2 · ℓ(θ̂) 3903.8 3906.7 3880.5
dim(θ) 6 5 8
AIC 3915.8 3916.7 3896.5
BIC 3947.8 3943.4 3939.2

1 Coefficient of this variable not significant based on Wald test.
2 No reduction of AIC and BIC by adding a further variable

Table 1: Summary of variable selection in Pollet and Nettle (2009).

covariates, by the (log) likelihood function or by criteria calculated by the (log) like-
lihood function (like AIC and BIC), the multinomial constant has to be omitted. As
grouping differs among the models due to different covariates in the models, the multi-
nomial constant differs as well and the models cannot be compared by the likelihood
which includes the constant.

As SPSS 15.0 provides only −2 · ℓ(θ̂), Pollet and Nettle (2009) calculated AIC and
BIC by adding the penalization terms 2 · dim(θ) and log(n) · dim(θ) respectively to -2
log likelihood of the grouped data including the multinomial constant, leading to an
invalid model choice.

Table 1 shows the progress of model choice following the strategy of Pollet and
Nettle (2009). The invalid model fit criteria used in the paper, as well as the correctly
calculated criteria, are shown. The number of model parameters differs, because Pollet
and Nettle did not account for the category specific intercepts β01, . . . , β0R−1.

Start model and step 1 are the same as in table 1. In the subsequent models fur-
ther variables were added one at a time starting with the variable which improved
model fit the most. The selected variables were the same using AIC and BIC to as-
sess model fit except for step 4a/4b. Using BIC the model in step 5 was chosen as
the best model including the variables partner income, education, age, happiness and
difference in education. Using AIC as model fit criterion, inclusion of region and health
could further improve model fit. The start model included partner income and partner
height. The variable partner income was significant based on the Wald test and re-
mained in the model while the variable partner height was excluded from the model due
to non-significance. In step 2 inclusion of the variable self-reported happiness resulted
in the best improvement of model fit compared to the start model. Inclusion of fur-
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ther variables did not improve model fit. Therefore the model with partner income and
happiness was chosen as the best model with partner income being the only significant
variable based on the Wald test.

When using the correctly calculated criteria AIC and BIC, a different model is
chosen. In step 2 the variable education instead of happiness is included. The progress
of variable selection following to the analytical strategy of Pollet and Nettle (2009) using
the correctly calculated criteria, is shown in table 2. Start model and step 1 are the
same as in table 1. In the subsequent models further variables were added one at a time
starting with the variable which improved model fit the most. The selected variables
were the same using AIC and BIC to assess model fit except for step 4a/4b. Using
BIC the model in step 5 was chosen as the best model including the variables partner
income, education, age, happiness and difference in education. Using AIC as model fit
criterion, inclusion of region and health could further improve model fit. In the next
section a further method of variable selection based on the AIC is used to determine
the important factors for orgasm frequency.

4



S
ta
rt

S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4a

S
te
p
4b

S
te
p
5

S
te
p
6

S
te
p
7

P
ar
tn
er

in
co
m
e

√
√

√
√

√
√

√
√

√

P
ar
tn
er

h
ei
gh

t
√

—
—

—
—

—
—

—
—

E
d
u
ca
ti
on

♀
—

—
√

√
√

√
√

√
√

A
ge

♀
—

—
—

√
√

√
√

√
√

H
ap

p
in
es
s

♀
—

—
—

—
√

—
√

√
√

D
iff
er
en
ce

in
E
d
u
ca
ti
on

—
—

—
—

—
√

√
√

√

R
eg
io
n

—
—

—
—

—
—

—
√

√

H
ea
lt
h

♀
—

—
—

—
—

—
—

—
√

A
IC

39
15
.8

39
16
.7

38
37
.0

38
00
.0

37
79
.4

1
3
7
6
4
.3

3
7
5
9
.2

3
7
5
3
.9

4

B
IC

39
47
.8

39
43
.4

38
90
.4

38
58
.7

38
48
.7

2
3
8
4
4
.3

3

1
A
IC

fo
r
st
ep

4a
.

2
B
IC

fo
r
st
ep

4b
.

3
N
o
re
d
u
ct
io
n
of

B
IC

b
y
ad

d
in
g
a
fu
rt
h
er

va
ri
ab

le
.

4
N
o
re
d
u
ct
io
n
of

A
IC

b
y
ad

d
in
g
a
fu
rt
h
er

va
ri
ab

le
.

T
a
b
le

2
:
S
u
m
m
ar
y
of

va
ri
ab

le
se
le
ct
io
n
fo
ll
ow

in
g
th
e
st
ra
te
gy

of
P
ol
le
t
an

d
N
et
tl
e
(2
00
9)

u
si
n
g
th
e
co
rr
ec
tl
y
ca
lc
u
la
te
d
A
IC

a
n
d
B
IC

.

5



3 Stepwise Backward Selection

Mode FALSE TRUE NA's

logical 3 1531 0

The stepwise backward selection starts with the saturated model, which includes all
variables. Variables are omitted one at a time starting with the variable that reduces
the AIC most. Variable selection stops, when the AIC cannot be reduced further by
removing a variable. Note that the original data contains three missing values in variable
edudiffSD. The corresponding observations have been removed from the data set before
fitting all models presented in Table 3 but only for models involving these variable
presented in Table 2 (since we assume the same approach was taken in SPSS).

In our data a stepwise backward selection results in a reduction of the AIC from
3759.2 in the saturated model to 3752.7 in the reduced model. The steps of the backwise
selection are shown in table 3. The variable partner income, which was included in all
models when following the strategy of Pollet and Nettle (2009), is here dropped in step
2. By stepwise backward selection the same variables except for partner income are
chosen as by the strategy of Pollet and Nettle using the correctly calculated AIC.

Model Start Step 1 Step 2 Step 3 Step 4

Partner height
√

— — — —
Partner income

√ √
— — —

Duration of relationship
√ √ √

— —
Difference in income

√ √ √ √
—

Age ♀
√ √ √ √ √

Diffference in education
√ √ √ √ √

Education ♀
√ √ √ √ √

Happiness ♀
√ √ √ √ √

Region
√ √ √ √ √

Health ♀
√ √ √ √ √

AIC 3759.2 3757.2 3755.3 3753.8 3752.7

Table 3: Steps of backward variable selection based on the AIC.

4 Variable Selection by Simultaneous Inference

In the following, the relevant factors for orgasm frequency are assessed using the pro-
cedure for simultaneous inference introduced by Hothorn et al. (2008) instead of using
model fit criterions like AIC and BIC. Therefore, we fit a cumulative logit model, which
includes all covariates and use the max-t-test to select important variables based on
adjusted p-values. The hypotheses are

H0
j : βj = 0, j = 1, . . . , p,
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and can be specified as linear hypotheses Kβ = 0 with the matrix K being the p × p

identity matrix. Three observations with missings in variable edudiffSD have been
removed prior to fitting the model.

The parameter estimates and associated adjusted p-values are shown in table 4. The
respondant’s education is the relevant factor for orgasm frequency with a cumulative
odds ratio of exp(−1.82) = 0.16 comparing the categories “No school” and “University”.
Women with university degree have a higher chance of having an orgasm more fre-
quently than women without school education. Associated with this is the significance
of the variable“difference in education”with women having less orgasms the higher their
partners’ level of education is above their own. Further differences in orgasm frequency
exist between two regions of China.

Not only when selecting important variables by simultaneous inference of all param-
eter estimates the respondent’s education was chosen as the relevant factor for orgasm
frequency, but also the methods described in sections 2 and 3 selected education as
an important variable among others. Therefore we further investigate the effect of ed-
ucation and take a look at the cumulative odds ratios when comparing the levels of
the respondent’s education. Again we fit a cumulative logit model including all covari-
ates. The matrix of linear functions K, which sets up the linear hypothesis of model
parameters, is defined in the form that consecutive levels of education are compared.
The estimated log odds ratios and associated p-values of the simultaneous comparisons
based on the max-t-test are summarized in table 5.

When comparing levels of education from “No school” to “Upper middle school”
women with the respective higher level of education tend to have more frequent or-
gasms with cumulative odds ratios of 2.32 (Comparison Primary school - No school),
1.70 (Comparison Lower middle school - Primary school) und 1.81 (Comparison Upper
middle school - Lower middle school).
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Variable Estimate Adjusted p-value

Partner income 0.02 1.000
Partner height 0.01 1.000
Duration of relationship 0.09 1.000
Age -0.37 0.093
Difference in education -0.17 0.030
Difference in income -0.03 1.000
Education

University (reference category) NA —
Junior college 0.11 1.000
Upper middle 0.14 1.000
Lower middle -0.45 0.909
Primary -0.98 0.078
No school -1.82 0.000

Health
Poor (reference category) NA —
Not good 1.22 0.527
Fair 1.56 0.165
Good 1.70 0.091
Excellent 1.72 0.089

Happiness
Very unhappy (reference category) NA —
Not too happy 0.17 1.000
Relatively happy 0.64 0.986
Very happy 0.91 0.848

Region
Central West (reference category) NA —
North East 0.40 0.316
North 0.20 0.989
Inland South 0.49 0.224
Coastal East 0.20 0.980
Coastal South 0.59 0.015

Table 4: Parameter estimates of the saturated cumulative logit model with associated adjusted
p-values of the max-t-test.

Compared levels of education Estimated log odds ratio Adjusted p-value

University - Junior college -0.11 0.999
Junior college - Upper middle -0.03 1.000
Upper middle - Lower middle 0.59 0.000
Lower middle - Primary 0.53 0.003
Primary - No school 0.84 0.003

Table 5: Estimated log odds ratios for comparisons of consecutive levels of education and
associated adjusted p-values of the simultaneous comparisons.
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