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Abstract

This description of the R package coin is a (slightly) modified version of Hothorn,
Hornik, van de Wiel, and Zeileis (2008a) published in the Journal of Statistical Software.

The R package coin implements a unified approach to permutation tests providing a
huge class of independence tests for nominal, ordered, numeric, and censored data as well
as multivariate data at mixed scales. Based on a rich and flexible conceptual framework
that embeds different permutation test procedures into a common theory, a computational
framework is established in coin that likewise embeds the corresponding R functionality
in a common S4 class structure with associated generic functions. As a consequence,
the computational tools in coin inherit the flexibility of the underlying theory and con-
ditional inference functions for important special cases can be set up easily. Conditional
versions of classical tests—such as tests for location and scale problems in two or more
samples, independence in two- or three-way contingency tables, or association problems
for censored, ordered categorical or multivariate data—can easily be implemented as spe-
cial cases using this computational toolbox by choosing appropriate transformations of
the observations. The paper gives a detailed exposition of both the internal structure of
the package and the provided user interfaces along with examples on how to extend the
implemented functionality.

Keywords: conditional inference, exact distribution, conditional Monte Carlo, categorical data
analysis, R.

1. Introduction

Conditioning on all admissible permutations of the data for testing independence hypothe-
ses is a very old, yet very powerful and popular, idea (Fisher 1935; Ernst 2004). Con-
ditional inference procedures, or simply permutation or re-randomization tests, are imple-
mented in many different statistical computing environments. These implementations, for
example wilcox.test() for the Wilcoxon-Mann-Whitney test or mantelhaen.test() for
the Cochran-Mantel-Haenszel χ2 test in R (R Development Core Team 2008) or the tools
implemented in StatXact (Cytel Inc. 2003), LogXact (Cytel Inc. 2006), or Stata (StataCorp.
2003)—see Oster (2002, 2003) for an overview—all follow the classical classification scheme
of inference procedures and offer procedures for location problems, scale problems, correla-
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group time

control 300 300 300 300 300 300 300 300 300 300 300 300
treatment 18 22 75 163 271 300 300 300 300 300 300 300

Table 1: The rotarod data: length of time on rotating cylinder by group.

tion, or nominal and ordered categorical data. Thus, each test procedure is implemented
separately, maybe with the exception of conditional versions of linear rank statistics (Hájek,
Šidák, and Sen 1999) in NPAR1WAY as available in SAS (SAS Institute Inc. 2003).

Theoretical insights by Strasser and Weber (1999) open up the way to a unified treatment of
a huge class of permutation tests. The coin package for conditional inference is the computa-
tional counterpart to this theoretical framework, implemented in the R system for statistical
computing (R Development Core Team 2008). Hothorn, Hornik, van de Wiel, and Zeileis
(2006) introduce the package and illustrate the transition from theory to practice. Here, we
focus on the design principles upon which the coin implementation is based as well as on the
more technical issues that need to be addressed in the implementation of such conceptual
tools. Within package coin, formal S4 classes describe the data model and the conditional
test procedures, consisting of multivariate linear statistics, univariate test statistics and a
reference distribution. Thus, one can work with objects representing the theoretical entities
nearly in the same way as one would work with mathematical symbols. Generic functions
for obtaining statistics, conditional expectation and covariance matrices as well as p-value,
distribution, density and quantile functions for the reference distribution help to extract
information from these objects. The infrastructure is conveniently interfaced in the func-
tion independence_test(), thus providing the computational counterpart of the theoretical
framework of Strasser and Weber (1999).

Here, we start out with an illustrative application of independence_test() to a small 2-
sample problem (see Table 1) and then continue to introduce the underlying computational
building blocks using the same data set. The data was used previously by Bergmann, Lud-
brook, and Spooren (2000) as a challenging example in a comparison of test statistics and
p-values of the Wilcoxon-Mann-Whitney rank sum test as reported by eleven statistical pack-
ages. More specifically, n = 24 rats received a fixed oral dose of a centrally acting muscle
relaxant as active treatment or a saline solvent as control. The animals were placed on a
rotating cylinder and the length of time each rat remained on the cylinder was measured, up
to a maximum of 300 seconds. The rats were randomly assigned to the control and treat-
ment groups, thus a re-randomization test as implemented in independence_test() is the
appropriate way to investigate if the response is independent of the group assignment. The
data are particularly challenging because of the many ties in the (right-censored) response (19
observations take the maximal value 300) and the quasi-complete separation (smaller values
of time are only observed in the treatment group). Conceptually, this makes computation of
the two-sided exact p-value for any 2-sample contrast very simple: p = 2 ·

(

19
12

)

/
(

24
12

)

= 0.03727.
However, in software, this often makes computations of the exact p-value more difficult be-
cause several simple algorithms fail.

Utilizing coin, the hypothesis of independence of length of time and group assignment can
be specified by a formula which, together with a data frame rotarod, serve as arguments to
independence_test:
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R> library("coin")

R> data("rotarod", package = "coin")

R> independence_test(time ~ group, data = rotarod,

+ ytrafo = rank_trafo, distribution = exact())

Exact General Independence Test

data: time by group (control, treatment)

Z = 2.4389, p-value = 0.03727

alternative hypothesis: two.sided

Here, the conditional Wilcoxon-Mann-Whitney test was performed via a rank transformation
of the response, employing the exact distribution for obtaining the p-value (yielding the correct
result outlined above). Users of R can easily interpret this output since it is represented in the
same format as classical tests in the basic stats package. Based on the p-value derived from
the exact conditional distribution of the test statistic Z, the independence of group assignment
and time on the cylinder can be rejected.

Although the above piece of code looks embarrassingly simple, the underlying computations
are much more sophisticated than visible at first sight: The data are pre-processed along with
their transformations, deviations from independence are captured by a (possibly multivariate)
linear statistic, standardized by conditional expectation and variance, and aggregated to a
final test statistic. Subsequently, the requested reference distribution is computed, from which
a p-value is derived, and everything is wrapped into an object that can be conveniently printed
or queried for more detailed information. After briefly reviewing the underlying theory from
Strasser and Weber (1999) in Section 2, we introduce formal S4 classes and methods capturing
all the outlined steps in Section 3. Section 4 provides further information about high-level
user interfaces and extensibility, and Section 5 further illustrates how to employ the software
in practice using a categorical data example. Section 6 concludes the paper with a short
discussion, some more details about the underlying theory can be found in an appendix.

2. Permutation tests in a nutshell

In the following we give a brief overview of the general theory for permutation tests as devel-
oped by Strasser and Weber (1999) and implemented by Hothorn et al. (2006).

The task is to test the independence of two variables Y and X from sample spaces Y and
X which may be measured at arbitrary scales and may be multivariate as well. In addition,
b ∈ {1, . . . , k}, a factor measured at k levels, indicates a certain block structure of the obser-
vations: for example study centers in a multi-center randomized clinical trial where only a
re-randomization of observations within blocks is admissible. We are interested in testing the
null hypothesis

H0 : D(Y|X, b) = D(Y|b)

of conditional independence of Y and X within blocks b against arbitrary alternatives, for ex-
ample shift or scale alternatives, linear trends, association in contingency tables etc. Strasser
and Weber (1999) suggest deriving scalar test statistics for testing H0 from multivariate linear
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statistics of the form

T =
k
∑

j=1

Tj ∈ R
pq (1)

where the linear statistic for each block is given by

Tj = vec

(

n
∑

i=1

I(bi = j)wig(Xi)h(Yi)
⊤

)

∈ R
pq.

The function I(·) is the indicator function and vec denotes the vec operator (which stacks the
columns of a matrix). Here, g : X → R

p×1 is a transformation of the X measurements and
h : Y → R

q×1 is a transformation of the Y values. The function h(Yi) = h(Yi, (Y1, . . . ,Yn))
is also called influence function and may depend on the full vector of responses (Y1, . . . ,Yn),
however only in a permutation symmetric way, i.e., the value of the function must not depend
on the order in which Y1, . . . ,Yn appear. The case weights wi are assumed to be integer-
valued, indicating that wi observations with realizations Yi, Xi and bi are available, with
default wi ≡ 1.

The distribution of T depends on the joint distribution of Y and X, which is unknown under
almost all practical circumstances. At least under the null hypothesis one can dispose of
this dependency by fixing X1, . . . ,Xn and conditioning on all possible permutations of the
responses Y1, . . . ,Yn within block j, j = 1, . . . , k. The conditional expectation µ ∈ R

pq and
covariance Σ ∈ R

pq×pq of T under H0 given all permutations σ ∈ S of the responses are
derived by Strasser and Weber (1999) and are given in Appendix A. Having the conditional
expectation and covariance at hand we are able to standardize an observed linear statistic
t ∈ R

pq (of the form given in Equation 1) and aggregate it to some univariate test statistic
c = c(t, µ,Σ). Various choices for c(t, µ,Σ) are conceivable, e.g., a quadratic form or a
maximum type statistic (see Section 3). In the latter case, a natural first step is to standardize
each of the pq statistics in t by its expectation and standard deviation:

z = diag(Σ)−1/2(t− µ). (2)

In the following, we describe a class structure for representing these theoretical objects along
with possible choices of test statistics c and computations or approximations of the associated
reference distributions.

3. A class structure for permutation tests

In this section, the theory of permutation tests, as briefly outlined in the previous section, is
captured in a set of S4 classes and methods: In Section 3.1, we suggest objects representing
the data and the independence problem, for which a test statistic is computed subsequently.
Objects for the associated reference distribution are constructed in Section 3.2. Finally, in
Section 3.3, everything is combined in a single object for the whole testing procedure.
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3.1. Data, independence problems and test statistics

Data structure

We are provided with n observations (Yi,Xi, bi, wi), i = 1, . . . , n. In addition to variables X,
Y, and b, it is convenient (for example to efficiently represent large contingency tables) to
include case weights wi, defaulting to wi ≡ 1. This data structure is represented by class
‘IndependenceProblem’:

Class ‘IndependenceProblem’

Slot Class

x ‘data.frame’
y ‘data.frame’
block ‘factor’
weights ‘numeric’

Note that objects of this class implicitly define the null distribution H0 and all admissible
permutations of observations within blocks.

For our illustrating rotating rats example, we specify the hypothesis of independence of vari-
ables time and group by initializing a new independence problem with the corresponding
observations:

R> ip <- new("IndependenceProblem",

+ y = rotarod["time"], x = rotarod["group"])

Independence problems and linear statistics

The transformation functions g and h as well as the transformed observations g(Xi) and
h(Yi), i = 1, . . . , n, are added to the data structure by extending class ‘IndependenceProblem’:

Class ‘IndependenceTestProblem’
Contains ‘IndependenceProblem’

Slot Class

xtrans ‘matrix’
ytrans ‘matrix’
xtrafo ‘function’
ytrafo ‘function’

The ytrafo and xtrafo slots correspond to the transformations h and g, respectively. The
ith row of the n×q matrix ytrans corresponds to h(Yi). Similarly, the rows of xtrans (n×p)
correspond to g(Xi). Note that, in addition to the data, hypothesis and permutation scheme,
the test statistic T is defined by objects of class ‘IndependenceTestProblem’ as well.

In the simplest case of both X and Y being univariate factors at p and q levels, g and h
are the corresponding dummy codings and the linear statistic T is the (vectorized) p × q
contingency table of X and Y. In the rats example, the default dummy coding for factor
group is employed and a rank transformation (via rank_trafo()) is applied to time.
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R> itp <- new("IndependenceTestProblem", ip, ytrafo = rank_trafo)

The linear statistic T, its conditional expectation µ and covariance Σ are stored in objects of
class ‘IndependenceLinearStatistic’:

Class ‘IndependenceLinearStatistic’
Contains ‘IndependenceTestProblem’

Slot Class

linearstatistic ‘numeric’
expectation ‘numeric’
covariance ‘VarCovar’

Class ‘VarCovar’ represents either a complete covariance matrix or its diagonal elements
only. By default, only the conditional variances are stored, the whole covariance matrix can
be computed as needed (see below). In the rotating rats example, such an object is easily
created via

R> ils <- new("IndependenceLinearStatistic", itp)

Using methods for suitable generic functions (see Table 2), the linear statistic for the rotating
rats can be extracted via

R> statistic(ils, type = "linear")

control 180

This is simply the sum of the average ranks in the control group, i.e., 180 = 12 ·15 because all
12 observations have the maximal average rank 15. Additionally, the associated conditional
mean and variance under H0 can be computed via:

R> expectation(ils)

control

150

R> variance(ils)

control

151.3043

based upon which we can now set up a test statistic.

Test statistics

The specification of the inference procedure is completed by the definition of a univariate test
statistic c which is represented by a virtual class ‘IndependenceTestStatistic’:
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Function Description

statistic(object, type) Extraction of the linear statistic t (type = "linear"),
the standardized statistic z (type = "standardized")
or the final test statistic c (type = "test", only for ob-
jects inheriting from ‘IndependenceTestStatistic’).

expectation(object) Extraction of the conditional expectation µ.
covariance(object) Extraction of the complete conditional covariance ma-

trix Σ.
variance(object) Extraction of the diagonal elements of the conditional

covariance matrix diag(Σ).

Table 2: List of generic functions with methods for classes inheriting from
‘IndependenceLinearStatistic’.

Class ‘IndependenceTestStatistic’
Contains ‘IndependenceLinearStatistic’

Slot Class

teststatistic ‘numeric’
standardizedlinearstatistic ‘numeric’

The slot standardizedlinearstatistic contains z, the (possibly multivariate) linear statis-
tic standardized by its conditional expectation and variance (Equation 2). Slot teststatistic
is for storing univariate test statistics c. Methods for all generics listed in Table 2 are also
available for objects of this class.

coin implements three ‘IndependenceTestStatistic’ subclasses with associated univariate
test statistics: scalar test statistics cscalar, maximum-type statistics cmax and quadratic forms
cquad. In case of univariate linear statistics t, i.e., for pq = 1, a natural test statistic c is
simply the standardized linear statistic

cscalar(t, µ,Σ) =
t− µ√

Σ
= z.

A special class is available for this

Class ‘ScalarIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class

alternative ‘character’
paired ‘logical’

that also defines a character vector specifying the alternative to test against ("two.sided",
"greater" and "less"). Thus, the construction of a scalar test statistic corresponds to the
construction of a suitable object via

R> sits <- new("ScalarIndependenceTestStatistic", ils,

+ alternative = "two.sided")

R> statistic(sits, type = "standardized")
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control 2.438909

which yields the standardized Wilcoxon-Mann-Whitney statistic reported in the introductory
example. In the multivariate case (pq > 1), a natural extension is to employ a maximum-type
statistic of the form

cmax(t, µ,Σ) =











max |z| (“two-sided”),

min (z) (“less”),

max (z) (“greater”),

where the definition reflects the associated alternative with name given in quotes. Again a
special class ‘MaxTypeIndependenceTestStatistic’ is available for this:

Class ‘MaxTypeIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class

alternative ‘character’

Alternatively, a quadratic form cquad(t, µ,Σ) = (t−µ)⊤Σ+(t−µ) can be used as test statistic.
It is computationally more expensive because the Moore-Penrose inverse Σ+ of Σ is involved.
Such statistics are represented by objects of class ‘QuadTypeIndependenceTestStatistic’
defining slots for Σ+ and its rank (degrees of freedom):

Class ‘QuadTypeIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class

covarianceplus ‘matrix’
df ‘numeric’
paired ‘logical’

A slot alternative is not needed because, by construction, quadratic forms cannot be applied
to one-sided hypotheses.

3.2. Representation of conditional null distributions

The conditional distribution (or an approximation thereof) and thus the p-value correspond-
ing to the statistic c(t, µ,Σ) can be computed in several different ways. For some special
forms of the linear statistic, the exact distribution of the test statistic is tractable. For 2-
sample problems, the shift algorithm by Streitberg and Röhmel (1986, 1987) and the split-up
algorithm by van de Wiel (2001) are implemented as part of the package.

Conditional Monte Carlo procedures can always be used to approximate the exact distribu-
tion. In this case, within each block, a sufficiently large number of random samples from
all admissible permutations of the observations is drawn. The test statistic is computed for
the permuted Y values and the distribution of these test statistics is an approximation to
the conditional reference distribution. When p-values are computed, confidence intervals are
available from the binomial distribution.
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Strasser and Weber (1999, Theorem 2.3) showed that the conditional distribution of linear
statistics T with conditional expectation µ and covariance Σ tends to a multivariate normal
distribution with parameters µ and Σ as

∑n
i=1 I(bi = j)wi → ∞ for all j = 1, . . . , k. Thus,

the asymptotic conditional distribution of the standardized linear statistic z is normal and
therefore, p-values for scalar or maximum-type univariate statistics can be computed directly
in the univariate case (pq = 1) or approximated by numerical algorithms (Genz 1992) as
implemented in package mvtnorm (Genz, Bretz, and Hothorn 2008) in the multivariate set-
ting. For quadratic forms cquad which follow a χ2 distribution with degrees of freedom given
by the rank of Σ (see Johnson and Kotz 1970, Chapter 29), asymptotic probabilities can be
computed straightforwardly.

A null distribution is represented by either a distribution (and p-value) function only

Class ‘PValue’

Slot Class

pvalue ‘function’
midpvalue ‘function’
pvalueinterval ‘function’
p ‘function’
name ‘character’

or, where possible, is augmented by its density and quantile functions:

Class ‘NullDistribution’
Contains ‘PValue’

Slot Class

q ‘function’
d ‘function’
support ‘function’
parameters ‘list’

Currently, there are three classes extending ‘NullDistribution’: ‘ExactNullDistribution’,
‘ApproxNullDistribution’ (adding a slot seed containing the current state of the random
number generator) and ‘AsymptNullDistribution’. All of them can be queried for probabil-
ities, quantiles, etc., using suitable methods (see Table 3 for an overview). New methods for
computing or approximating the conditional distribution can be integrated into the framework
via suitable inheritance from ‘PValue’ (an example is given in Section 4).

The support function returns the support of a discrete distribution.

Using these tools, the exact p-value for the independence test on the rotating rats along
with the complete exact reference distribution (allowing for the computation of quantiles, for
example) can be derived via

R> end <- ExactNullDistribution(sits)

R> pvalue(end, statistic(sits))

[1] 0.03726708
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Class Description

‘ExactNullDistribution’ Exact conditional null distribution (e.g., computed via
the shift algorithm).

‘ApproxNullDistribution’ Approximation of the exact conditional distribution using
conditional Monte Carlo procedures.

‘AsymptNullDistribution’ Asymptotic conditional distribution (via multivariate
normal or χ2 distribution).

Method Description

pvalue(object) Computation of the p-value (plus a confidence interval
if Monte Carlo procedures have been used) based on an
observed test statistic c and its conditional null distribu-
tion.

midpvalue(object) Computation of the mid-p-value (plus a confidence inter-
val if Monte Carlo procedures have been used) based on
an observed test statistic c and its conditional null distri-
bution.

pvalue_interval(object) Computation of the p-value interval based on an observed
test statistic c and its conditional null distribution.

dperm(object, x) Evaluation of the probability density function at x.
pperm(object, q) Evaluation of the cumulative distribution function for

quantile q.
qperm(object, p) Evaluation of the quantile function for probability p.
rperm(object, n) Generation of n random numbers from the null distribu-

tion.
support(object) Extraction of the support of the null distribution.

Table 3: Classes and methods for conditional null distributions.

R> qperm(end, 0.95)

[1] 1.544642

For maximum-type statistics cmax, single-step and step-down multiplicity adjusted p-values
based on the limiting distribution and conditional Monte Carlo methods (see Westfall and
Young 1993) are available as well.

3.3. Objects for conditional tests

A conditional test is represented by a test statistic of class ‘IndependenceTestStatistic’
and its conditional null distribution inheriting from class ‘PValue’. In addition, a character
string giving the name of the test procedure is defined in class ‘IndependenceTest’:
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Class ‘IndependenceTest’

Slot Class

distribution ‘PValue’
statistic ‘IndependenceTestStatistic’
estimates ‘list’
method ‘character’
call ‘call’

Remember that objects of class ‘IndependenceTestStatistic’ represent the data, hypothe-
sis, linear statistic and test statistic along with conditional expectation and covariance matrix.
The estimates slot may contain parameter estimates where available, for example an esti-
mate and corresponding confidence interval for a shift parameter derived from a conditional
Wilcoxon-Mann-Whitney test.

A complete description of the conditional independence test for the rotating rats data is
given by an object of class ‘IndependenceTest’ which is conveniently represented by the
corresponding show() method:

R> new("IndependenceTest", statistic = sits, distribution = end)

Exact General Independence Test

data: time by group (control, treatment)

c = 2.4389, p-value = 0.03727

Of course, the methods previously defined in this section (see Tables 2 and 3) are defined
for objects of class ‘IndependenceTest’ as well. Thus, all theoretical entities introduced in
Section 2 are now captured in a single object of class ‘IndependenceTest’ and all methods
for extracting information from it are readily available.

4. Interfaces to permutation inference

In Section 3, all the necessary computational building blocks are introduced for implementing
the general class of permutation tests outlined in Section 2. However, one rarely needs to
exploit the full flexibility of each component of the framework. More often, one wants to
employ sensible defaults for most (if not all) steps in the analysis but preserving the possi-
bility to extend a few steps based on user-supplied methods. For this purpose, coin provides
the function independence_test() as the main user interface for performing independence
tests. Many of its arguments have flexible defaults or can be specified by a simple character
string while still allowing to plug in much more complex user-defined objects, e.g., for data
preparation, computation of the null distribution, or transformation functions.

4.1. A convenient user interface

Via the generic function independence_test(), all steps described in Section 3 can be carried
out using a single command. The main workhorse behind it is the method for objects of class
‘IndependenceProblem’:
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independence_test(object,

teststat = c("maximum", "quadratic", "scalar"),

distribution = c("asymptotic", "approximate", "exact"),

alternative = c("two.sided", "less", "greater"),

xtrafo = trafo, ytrafo = trafo, scores = NULL,

check = NULL, ...)

Thus, object describes the data and the null hypothesis. Arguments xtrafo and ytrafo refer
to the transformations g and h: Both are by default set to function trafo() which chooses
suitable transformations based on the scale of the considered variables (see below). The three
types of univariate test statistics discussed above are hard-coded and can be specified by
a simple string. Similarly, the reference distribution and the alternative hypothesis can be
supplied as strings. In addition to these simple specifications, more flexible specifications for
the data (object), the transformations (xtrafo, ytrafo), and the distribution are available,
as discussed in the following. The scores argument takes a named list of numeric vectors to be
used as scores for ordered factors. Validity checks for objects of class ‘IndependenceProblem’
specified to argument check can be used to test for certain aspects of the data, e.g., when
one has to make sure that two independent samples are present.

4.2. Data specification

The standard way of specifying relationships between variables in R are formulas in combi-
nation with a data frame. Hence, a ‘formula’ method for independence_test() is provided
that interprets the left hand side variables of a formula as Y variables (univariate or possibly
multivariate), the right hand side as X variables (univariate or multivariate as well). An
optional blocking factor can specified after a vertical bar, e.g.,

y1 + y2 ~ x1 + x2 | block

This specifies an independence problem between two Y variables and two X variables (in
case all variables are numeric the linear statistic is 4-dimensional with p = 2 and q = 2) for
each level in block. As usual, data, weights and subset arguments can be specified as well.
Based on all these arguments the ‘IndependenceProblem’ is built and simply passed on to
the independence_test() method described above.

For (simple) categorical data, there is yet another way of specifying the independence problem,
namely via the ‘table’ method of independence_test(). Its first argument is allowed to be
a 2- or 3-dimensional table: The first two margins are interpreted as univariate categorical X
and Y variables and the optional third margin is taken to be the blocking factor. Again, an
‘IndependenceProblem’ object is derived from this and passed on to the associated method.

4.3. Null distributions

In the simplest case, the distribution argument of the independence_test() methods
can be specified by a simple character string. However, this is not flexible enough in some
situations and hence it is also possible to supply a function that can compute a ‘PValue’
object from an ‘IndependenceTestStatistic’ object.

For the most important special cases, suitable function generators are provided in coin. For
example, the function approximate(B = 1000) returns a Monte Carlo function that draws
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B (default: 10000) random permutations. Similarly, exact() and approximate() return
functions computing the exact or asymptotic null distributions, respectively. Again, compu-
tational details in the computation of the null distribution can be controlled via arguments
of the function generators.

Additionally, it is also possible to set distribution to a user-supplied algorithm for comput-
ing the conditional null distribution. It just has to be provided in the form of a function taking
an object inheriting from ‘IndependenceTestStatistic’ and returning an object inheriting
from class ‘PValue’.

As an example, consider the computation of the exact p-value for testing independence of
two continuous random variables. The identity transformation is used for both g and h,
thus a conditional version of the test for zero Pearson correlation is constructed. We use a
tiny artificial example where enumeration and evaluation of all possible permutations is still
feasible. The function sexact() extracts both variables, computes all permutations using the
function permutations() from e1071 (Dimitriadou, Hornik, Leisch, Meyer, and Weingessel
2008), computes the linear test statistic for each permutation, standardizes it by expectation
and variance, and then sets up the distribution function.

R> set.seed(2908)

R> correxample <- data.frame(x = rnorm(7), y = rnorm(7))

R> sexact <- function(object) {

+ x <- object@xtrans

+ y <- object@ytrans

+ perms <- permutations(nrow(x))

+ pstats <- apply(perms, 1, function(p) sum(x[p,] * y))

+ pstats <- (pstats - expectation(object)) / sqrt(variance(object))

+ p <- function(q) 1 - mean(pstats > q)

+ new("PValue", p = p, pvalue = p)

+ }

Note that above implementation is kept simple for the purpose of illustration; it hard-codes
the alternative (less) and assumes that the transformed variables are univariate.

This function can then be passed to independence_test() for computing the distribution
function and p-value:

R> independence_test(y ~ x, data = correxample, alternative = "less",

+ distribution = sexact)

General Independence Test

data: y by x

Z = 1.4203, p-value = 0.9228

alternative hypothesis: less

4.4. Transformations

By default, independence_test() chooses the transformations g and h via the wrapper
function trafo(). This, in turn, chooses the actual transformation based on the scale of each
variable (individually) in a data frame data:
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trafo(data, numeric_trafo = id_trafo, factor_trafo = f_trafo,

surv_trafo = logrank_trafo, var_trafo = NULL, block = NULL)

The identity transformation is used for numeric variables (id_trafo()), factors are trans-
formed to indicator variables (f_trafo()), and censored variables are transformed to logrank
scores (logrank_trafo()). In f_trafo() a set of k indicator functions is used for a factor
with k levels, unless k = 2 for which a univariate indicator function is employed. A named
list containing different transformations to be applied to certain variables may be specified
as var_trafo argument. When a factor is given as block, all transformations are applied
separately within each block. The function trafo() can also easily be re-used by supplying
other (possibly user defined functions) as arguments to trafo().

Instead of using trafo(), a user-defined transformation can also be passed directly to xtrafo
or ytrafo. As an example, consider using a Mood test against scale alternatives for the
rotating rats data. This amounts to using the transformation h(Yi) = (rank(Yi)− (n+1)/2)2

for the response:

R> mood_score <- function(y) (rank_trafo(y) - (sum(!is.na(y)) + 1) / 2)^2

This can be used for constructing an exact test (based on the split-up algorithm) by hand:

R> ip <- new("IndependenceProblem",

+ y = rotarod["time"], x = rotarod["group"])

R> itp <- new("IndependenceTestProblem", ip,

+ ytrafo = mood_score)

R> ils <- new("IndependenceLinearStatistic", itp)

R> sits <- new("ScalarIndependenceTestStatistic", ils,

+ alternative = "two.sided")

R> new("ScalarIndependenceTest", statistic = sits,

+ distribution = ExactNullDistribution(sits, algorithm = "split-up"))

Exact General Independence Test

data: time by group (control, treatment)

Z = -2.3208, p-value = 0.03727

alternative hypothesis: two.sided

Alternatively, and more easily, the same result can be obtained by plugging mood_score()

into independence_test():

R> independence_test(time ~ group, data = rotarod, ytrafo = mood_score,

+ distribution = exact(algorithm = "split-up"))

Exact General Independence Test

data: time by group (control, treatment)

Z = -2.3208, p-value = 0.03727

alternative hypothesis: two.sided
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Test xtrafo g ytrafo h teststat c

Independent samples

Wilcoxon-Mann-Whitney f_trafo() rank_trafo() "scalar"

Normal quantiles f_trafo() normal_trafo() "scalar"

Median f_trafo() median_trafo() "scalar"

Ansari-Bradley f_trafo() ansari_trafo() "scalar"

Logrank f_trafo() logrank_trafo() "quadratic"

Kruskal-Wallis f_trafo() rank_trafo() "quadratic"

Fligner f_trafo() fligner_trafo() "quadratic"

Spearman rank_trafo() rank_trafo() "scalar"

Cochran-Mantel-Haenszel f_trafo() f_trafo() "quadratic"

Pearson’s χ2 f_trafo() f_trafo() "quadratic"

Cochran-Armitage / Linear scores any "scalar"

Association
K-sample permutation test f_trafo() any any
Maximally selected statistics maxstat_trafo() any "maximum"

Dependent samples

Friedman f_trafo() rank_trafo() "quadratic"

Stuart-Maxwell f_trafo() f_trafo() "quadratic"

Wilcoxon signed-rank f_trafo() rank_trafo() "scalar"

Table 4: Representations of the conditional counterparts of important classical tests in coin.

Similarly to the Mood test, the conditional counterpart of many other classical tests (some of
them implemented in package stats) are easily available through independence_test() by
specifying the appropriate xtrafo, ytrafo and teststat. This includes the Wilcoxon-Mann-
Whitney or Cochran-Mantel-Haenszel tests, but also many other well-known tests as shown
in Table 4.

Due to this flexibility, almost all special-purpose functionality implemented in packages ex-

actRankTests (Hothorn 2001; Hothorn and Hornik 2002, 2006) and maxstat (Hothorn and
Lausen 2002; Hothorn 2007) can be conveniently provided within the coin framework, so that
both packages will become deprecated in the future.

5. Permutation tests in practice: A categorical data example

The job satisfaction of African-American males in the USA (Agresti 2002, Table 7.8) is de-
scribed by measures of income and reported job satisfaction in four (ordinal) classifications.
It seems natural to surmise that job satisfaction increases with income. The data (see Fig-
ure 1) is given as a three-dimensional ‘table’ with variables Income and Job.Satisfaction

according to Gender (labels slightly modified for convenience):
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Gender = Female

●● ●●

<5000

VerySat

ModSat

LitSat

VeryDiss

5000−15000 15000−25000 >25000

Gender = Male

●● ●●●● ●●

<5000

VerySat

ModSat

LitSat

VeryDiss

5000−15000 15000−25000 >25000

Figure 1: Conditional mosaic plot of job satisfaction and income given gender.

R> data("jobsatisfaction", package = "coin")

R> js <- jobsatisfaction

R> dimnames(js)[[2]] <- c("VeryDiss", "LitSat", "ModSat", "VerySat")

R> ftable(Job.Satisfaction ~ Gender + Income, data = js)

Job.Satisfaction VeryDiss LitSat ModSat VerySat

Gender Income

Female <5000 1 3 11 2

5000-15000 2 3 17 3

15000-25000 0 1 8 5

>25000 0 2 4 2

Male <5000 1 1 2 1

5000-15000 0 3 5 1

15000-25000 0 0 7 3

>25000 0 1 9 6

The Cochran-Mantel-Haenszel test—a classical test for testing independence in stratified con-
tingency tables—could be used for assessing the independence hypothesis of income and job
satisfaction (stratified by gender). Traditionally, this test employs a cquad statistic derived
from the contingency table and a χ2 approximation of the null distribution:

R> it <- independence_test(js, teststat = "quadratic",

+ distribution = asymptotic())

R> it

Asymptotic General Independence Test
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data: Job.Satisfaction by

Income (<5000, 5000-15000, 15000-25000, >25000)

stratified by Gender

chi-squared = 10.2, df = 9, p-value = 0.3345

Thus, the test does not indicate significant departure from independence. However, ordering of
the factors is not exploited by the Cochran-Mantel-Haenszel test. As some positive correlation
of the two factors would seem natural, it is worth having a closer look at the data and the
test result. The underlying linear statistic is

R> statistic(it, type = "linear")

VeryDiss LitSat ModSat VerySat

<5000 2 4 13 3

5000-15000 2 6 22 4

15000-25000 0 1 15 8

>25000 0 3 13 8

This is exactly the original contingency table aggregated over the block factor Gender:

R> margin.table(js, 1:2)

Job.Satisfaction

Income VeryDiss LitSat ModSat VerySat

<5000 2 4 13 3

5000-15000 2 6 22 4

15000-25000 0 1 15 8

>25000 0 3 13 8

Therefore, the standardized linear statistic can be interpreted similarly to Pearson residuals
for the independence hypothesis:

R> statistic(it, type = "standardized")

VeryDiss LitSat ModSat VerySat

<5000 1.3112789 0.69201053 -0.2478705 -0.9293458

5000-15000 0.6481783 0.83462550 0.5175755 -1.6257547

15000-25000 -1.0958361 -1.50130926 0.2361231 1.4614123

>25000 -1.0377629 -0.08983052 -0.5946119 1.2031648

The positive diagonal and (mostly) negative off-diagonal elements convey that higher income
categories seem to be associated with higher job satisfaction. Thus, to direct power against
ordered alternatives, a linear-by-linear association statistic (Agresti 2002) should be used
instead of the omnibus χ2 statistic. This can be conveniently performed within coin, e.g.,
using simple equi-distant scores and a Monte Carlo approximation of the null distribution:
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R> it <- independence_test(js, distribution = approximate(B = 10000),

+ scores = list(Job.Satisfaction = 1:4, Income = 1:4))

R> pvalue(it)

[1] 0.0116

99 percent confidence interval:

0.009024885 0.014651019

Using this strategy, the null hypothesis of independence of job satisfaction and income can
be rejected in favor of a positive association of both variables. Other choices of scores are
also conceivable. Especially when there is an underlying numeric scale, interval midpoints are
often used (see Hothorn et al. 2006, for an example).

For other patterns of dependence—e.g., when only a few cells in a large table deviate from
independence—a maximum-type statistic is also useful for contingency tables. To complete
our tour of coin tools for categorical data, we briefly illustrate this approach using the job
satisfaction data again (even though a maximum-type statistic is clearly not very powerful
for the dependence pattern in this data set). The maximum-type test is set up easily:

R> independence_test(js, teststat = "maximum")

Asymptotic General Independence Test

data: Job.Satisfaction by

Income (<5000, 5000-15000, 15000-25000, >25000)

stratified by Gender

maxT = 1.6258, p-value = 0.7215

alternative hypothesis: two.sided

with its conditional asymptotic null distribution being available immediately (due to the joint
multivariate normal distribution for the contingency table T). Single-step adjusted p-values
for each cell of the contingency table corresponding to this maximum test can be computed
via

R> pvalue(independence_test(js, teststat = "maximum"),

+ method = "single-step")

VeryDiss LitSat ModSat VerySat

<5000 0.9010270 0.9987771 0.9999998 0.9888131

5000-15000 0.9992718 0.9948673 0.9998852 0.7215403

15000-25000 0.9659953 0.8034534 0.9999999 0.8267981

>25000 0.9761900 1.0000000 0.9996381 0.9394962

These p-values can be interpreted in a way similar to standardized contingency tables. The
discrepancy between the global adjusted p-value shown above and the minimum single-step
adjusted p-value is due to simulation variance. For more practical examples, including appli-
cations with numeric variables, we refer to Hothorn et al. (2006).

6. Odds and ends
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Internal functionality. The core functionality, i.e., a small set of functions computing the
linear statistic T (both for the original and permuted data), the conditional expectation µ
and conditional covariance matrix Σ, is coded in C. The shift and split-up algorithms (Streit-
berg and Röhmel 1986, 1987; van de Wiel 2001) for computing the exact null distribution in
2-sample problems with univariate response as well as conditional Monte Carlo procedures for
approximating the exact conditional null distribution are implemented in C as well. (In addi-
tion, some helper functions, e.g., the Kronecker product etc., are coded in C.) The complete
C source code and its documentation can be accessed via

R> browseURL(system.file("documentation", "html", "index.html",

+ package = "coin"))

The naming scheme of the C routines distinguishes between functions only called at the C

level (C_foo) and functions which can be called from R via the .Call interface (R_foo). Such
functions are available for most of the internal C functions to enable unit testing.

Quality assurance. The test procedures implemented in coin are continuously checked
against results obtained by the corresponding implementations in stats (where available). In
addition, the test statistics and exact, approximate and asymptotic p-values for data examples
given in the StatXact 6 user manual (Cytel Inc. 2003) are compared with the results reported
there. Step-down multiple adjusted p-values have been checked against results reported by
mt.maxT() from package multtest (Pollard, Ge, and Dudoit 2008). For details on the test
procedures we refer to the R transcript files in directory ‘tests’ of the coin package sources.

Computational details. The coin package imports packages mvtnorm (Genz et al. 2008)
for the evaluation of the multivariate normal distribution and package modeltools (Hothorn,
Leisch, and Zeileis 2008b) for formula parsing. The class structure, internal functionality,
user interface and examples are based on coin version 1.2-2, available under the terms of the
General Public License from http://CRAN.R-project.org/. R version 3.4.2 (R Development
Core Team 2008) was used for the computations, Figure 1 was created using the vcd package
(Meyer, Zeileis, and Hornik 2006).
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A. Expectation and covariance

The conditional expectation and covariance matrix of linear statistics T as given in Equation 1
in Section 2 are computed as follows. Let w·j =

∑n
i=1 I(bi = j)wi denote the sum of the

weights in block j and Sj the set of all permutations of the observations in block j. The
conditional expectation of the transformation h in block j is

E(h|Sj) = w−1
·j

∑

i

I(bi = j)wih(Yi) ∈ R
q

with corresponding q × q covariance matrix

COV(h|Sj) = w−1
·j

∑

i

I(bi = j)wi (h(Yi)− E(h|Sj)) (h(Yi)− E(h|Sj))
⊤ .

This is the basis for computing the conditional expectation and covariance of the linear
statistic Tj in block j:

µj = E(Tj |Sj) = vec

((

n
∑

i=1

I(bi = j)wig(Xi)

)

E(h|Sj)
⊤

)

and

Σj = COV(Tj |Sj)

=
w·j

w·j − 1
COV(h|Sj)⊗

(

∑

i

I(bi = j)wi

(

g(Xi)⊗ g(Xi)
⊤

)

)

− 1

w·j − 1
COV(h|Sj)⊗

(

∑

i

I(bi = j)wig(Xi)

)

⊗
(

∑

i

I(bi = j)wig(Xi)

)⊤

where ⊗ is the Kronecker product. The conditional expectation and covariance of T, aggre-
gated over all k blocks, are then given by

E(T|Sj) = µ =

k
∑

j=1

µj =

k
∑

j=1

E(Tj |Sj),

COV(T|Sj) = Σ =

k
∑

j=1

Σj =

k
∑

j=1

COV(Tj |Sj).

Affiliation:

Torsten Hothorn
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstraße 33
DE-80539 München, Germany
E-mail: Torsten.Hothorn@R-project.org
URL: http://www.stat.uni-muenchen.de/~hothorn/

mailto:Torsten.Hothorn@R-project.org
http://www.stat.uni-muenchen.de/~hothorn/


Torsten Hothorn, Kurt Hornik, Mark A. van de Wiel, Achim Zeileis 23

Kurt Hornik, Achim Zeileis
Department of Statistics and Mathematics
Wirtschaftsuniversität Wien
Augasse 2–6
AT-1090 Wien, Austria
E-mail: Kurt.Hornik@R-project.org, Achim.Zeileis@R-project.org

Mark A. van de Wiel
Department of Mathematics
Vrije Universiteit Amsterdam
De Boelelaan 1081a
NL-1081 HV Amsterdam, The Netherlands
E-mail: mark.vdwiel@vumc.nl

mailto:Kurt.Hornik@R-project.org
mailto:Achim.Zeileis@R-project.org
mailto:mark.vdwiel@vumc.nl

	Introduction
	Permutation tests in a nutshell
	A class structure for permutation tests
	Data, independence problems and test statistics
	Data structure
	Independence problems and linear statistics
	Test statistics

	Representation of conditional null distributions
	Objects for conditional tests

	Interfaces to permutation inference
	A convenient user interface
	Data specification
	Null distributions
	Transformations

	Permutation tests in practice: A categorical data example
	Odds and ends
	Expectation and covariance

