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1 Introduction

Bayesian Networks (Pearl [9]) are a powerful tool for probabilistic inference
among a set of variables, modeled using a directed acyclic graph. However,
one often does not have the network, but only a set of observations, and wants
to reconstruct the network that generated the data. The bnstruct package
provides objects and methods for learning the structure and parameters of the
network in various situations, such as in presence of missing data, for which it is
possible to perform imputation (guessing the missing values, by looking at the
data), or the modeling of evolving systems using Dynamic Bayesian Networks.
The package also contains methods for learning using the Bootstrap technique.
Finally, bnstruct, has a set of additional tools to use Bayesian Networks, such
as methods to perform belief propagation.

In particular, the absence of some observations in the dataset is a very com-
mon situation in real-life applications such as biology or medicine, but very few
software around is devoted to address these problems. bnstruct is developed
mainly with the purpose of filling this void.

This document is intended to show some examples of how bnstruct can be
used to learn and use Bayesian Networks. First we describe how to manage
data sets, how to use them to discover a Bayesian Network, and finally how
to perform some operations on a network. Complete reference for classes and
methods can be found in the package documentation.

If you use bnstruct in your work, please cite it as:

Alberto Franzin, Francesco Sambo, Barbara di Camillo. ”bnstruct:
an R package for Bayesian Network structure learning in the presence
of missing data.” Bioinformatics, 2017; 33 (8): 1250-1252; Oxford
University Press.

These information and a BibTeX entry can be found with

> citation("bnstruct")

1.1 Overview

We provide here some general informations about the context for understanding
and using properly this document. A more thorough introduction to the topic
can be found for example in Koller and Friedman [7].

1.1.1 The data

A dataset is a collection of rows, each of which is composed by the same number
of values. Each value corresponds to an observation of a variable, which is a
feature, an event or an entity considered significant and therefore measured.
In a Bayesian Network, each variable is associated to a node. The number
of variables is the size of the network. Each variable has a certain range of
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values it can take. If the variable can take any possible value in its range,
it is called a continuous variable; otherwise, if a variable can only take some
values in its range, it is a discrete variable. The number of values a variable
can take is called its cardinality. A continuous variable has infinite cardinality;
however, in order to deal with it, we have to restrict its domain to a smaller
set of values, in order to be able to treat it as a discrete variable; this process
is called quantization, the number of values it can take is called the number of
levels of the quantization step, and we will therefore call the cardinality of a
continuous variable the number of its quantization levels, with a little abuse of
terminology.

In many real-life applications and contexts, it often happens that some ob-
servations in the dataset we are studying are absent, for many reasons. In
this case, one may want to “guess” a reasonable (according to the other obser-
vations) value that would have been present in the dataset, if the observations
was successful. This inference task is called imputation. In this case, the dataset
with the “holes filled” is called the imputed dataset, while the original dataset
with missing values is referred to as the raw dataset. In section 3.2 we show
how to perform imputation in bnstruct. The case of missing variables is not
considered by bnstruct.

Another common operation on data is the employment of resampling tech-
niques in order to estimate properties of a distribution from an approximate
one. This usually allows to have more confidence in the results. We implement
the bootstrap technique (Efron and Tibshirani [2]), and provide it to generate
samples of a dataset, with the chance of using it on both raw and imputed data.

1.1.2 Bayesian Networks

After introducing the data, we are now ready to talk about Bayesian Net-
works. A Bayesian Network (hereafter sometimes simply network, net or BN
for brevity) is a probabilistic graphical model that encodes the conditional de-
pendency relationships of a set of variables using a Directed Acyclic Graph
(DAG). Each node of the graph represents one variable of the dataset; we will
therefore interchange the terms node and variable when no confusion arises. The
set of directed edges connecting the nodes forms the structure of the network,
while the set of conditional probabilities associated with each variable forms the
set of parameters of the net.

The DAG is represented as an adjacency matrix, a n× n matrix, where n is
the number of nodes, whose cells of indices (i, j) take value 1 if there is an edge
going from node i to node j, and 0 otherwise.

The problems of learning the structure and the parameters of a network from
data define the structure learning and parameter learning tasks, respectively.

Given a dataset of observations, the structure learning problem is the prob-
lem of finding the DAG of a network that may have generated the data. Several
algorithms have been proposed fot this problem, but a complete search is doable
only for networks with no more than 20-30 nodes. For larger networks, several
heuristic strategies exist.
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The subsequent problem of parameter learning, instead, aims to discover the
conditional probabilities that relate the variables, given the dataset of observa-
tions and the structure of the network.

In addition to structure learning, sometimes it is of interest to estimate a
level of the confidence on the presence of an edge in the network. This is what
happens when we apply bootstrap to the problem of structure learning. The
result is not a DAG, but a different entity that we call weighted partially DAG,
which is an adjacency matrix whose cells of indices (i, j) take the number of
times that an edge going from node i to node j appear in the network obtained
from each bootstrap sample.

As the graph obtained when performing structure learning with bootstrap
represents a measure of the confidence on the presence of each edge in the
original network, and not a binary response on the presence of the edge, the
graph is likely to contain undirected edges or cycles.

As the structure learnt is not a DAG but a measure of confidence, it cannot
be used to learn conditional probabilities. Therefore, parameter learning is not
defined in case of network learning with bootstrap.

One of the most relevant operations that can be performed with a Bayesian
Network is to perform inference with it. Inference is the operations that, given a
set of observed variables, computes the probabilities of the remaining variables
updated according to the new knowledge. Inference answers questions like “How
does the probability for variable Y change, given that variable X is taking value
x′?”.

2 Installation

The latest stable version of the package is available on CRAN https://cran.

r-project.org, and can therefore be installed from an R session using

> install.packages("bnstruct")

The latest development version of bnstruct can be found at http://github.
com/sambofra/bnstruct.

In order to install the package, it suffices to open a shell and run

git clone https://github.com/sambofra/bnstruct.git

cd bnstruct

make install

bnstruct requires R ≥ 2.10, and depends on bitops, igraph, Matrix and
methods. Packages Rgraphviz or qgraph are requested in order to plot graphs,
but are not mandatory.
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3 Data sets

The class that bnstruct provides to manage datasets is BNDataset. It contains
all of the data and the informations related to it: raw and imputed data, raw
and imputed bootstrap samples, and variable names and cardinality.

3.1 Creating a BNDataset

There are two ways to build a BNDataset: using two files containing respectively
header informations and data, and manually providing the data table and the
related header informations (variable names, cardinality and discreteness).

> dataset.from.data <- BNDataset(data = data,

+ discreteness = rep('d',4),

+ variables = c("a", "b", "c", "d"),

+ node.sizes = c(4,8,12,16))

>

> dataset.from.file <- BNDataset("path/to/data.file",

+ "path/to/header.file")

The key informations needed are:

1. the data;

2. the state of variables (discrete or continuous);

3. the names of the variables;

4. the cardinalities of the variables (if discrete), or the number of levels they
have to be quantized into (if continuous).

Names and cardinalities/leves can be guessed by looking at the data, but it is
strongly advised to provide all of the informations, in order to avoid problems
later on during the execution.

Data can be provided in form of data.frame or matrix. It can contain NAs.
By default, NAs are indicated with ’?’; to specify a different character for NAs,
it is possible to provide also the na.string.symbol parameter. The values con-
tained in the data have to be numeric (real for continuous variables, integer for
discrete ones). The default range of values for a discrete variable X is [1,|X|],
with |X| being the cardinality of X. The same applies for the levels of quan-
tization for continuous variables. If the value ranges for the data are different
from the expected ones, it is possible to specify a different starting value (for
the whole dataset) with the starts.from parameter. E.g. by starts.from=0

we assume that the values of the variables in the dataset have range [0,|X|-1].
Please keep in mind that the internal representation of Rpackagebnstruct starts
from 1, and the original starting values are then lost.

It is possible to use two files, one for the data and one for the metadata,
instead of providing manually all of the info. bnstruct requires the data files
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to be in a format subsequently described. The actual data has to be in (a text
file containing data in) tabular format, one tuple per row, with the values for
each variable separated by a space or a tab. Values for each variable have to
be numbers, starting from 1 in case of discrete variables. Data files can have a
first row containing the names of the corresponding variables.

In addition to the data file, a header file containing additional informations
can also be provided. An header file has to be composed by three rows of
tab-delimited values:

1. list of names of the variables, in the same order of the data file;

2. a list of integers representing the cardinality of the variables, in case of
discrete variables, or the number of levels each variable has to be quantized
in, in case of continuous variables;

3. a list that indicates, for each variable, if the variable is continuous (c or
C), and thus has to be quantized before learning, or discrete (d or D).

In case of need of more advanced options when reading a dataset from files,
please refer to the documentation of the read.dataset method. Imputation
and bootstrap are also available as separate routines (impute and bootstrap,
respectively).

We provide two sample datasets, one with complete data (the Asia network,
Lauritzen and Spiegelhalter [8]) and one with missing values (the Child network,
Spiegelhalter, Dawid, Lauritzen, and Cowell [11]), in the extdata subfolder; the
user can refer to them as an example. The two datasets have been created with

> asia <- BNDataset("asia_10000.data",

+ "asia_10000.header",

+ starts.from = 0)

> child <- BNDataset("Child_data_na_5000.data",

+ "Child_data_na_5000.header",

+ starts.from = 0)

and are also available with

> asia <- asia()

> child <- child()

If the dataset contains observations a system in consecutive instants, it is
possible to specify the number of instants that compose the dataset, using the
num.time.steps parameter to BNDataset() or read.dataset. The user can
choose whether to provide a description for all the variables observed in the
entire dataset, or to give a description of the variables of a single time step. In
the latter case, the definition will be expanded to the variables in all the instants,
and the variables V1, V2, . . . will be automatically renamed in V1 t1, V2 t1, . . . for
the first instant, V1 t2, V2 t2, . . ., and so on.
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It is assumed that the variables in the dataset are reported in the following
order: V1 t1, V2 t1, . . . , VN tk, V1 t2, V2 t2, . . . , VN tk.

> dataset <- BNDataset("asia_2_layers.data",

+ "asia_2_layers.header",

+ num.time.steps = 2,

+ starts.from = 0)

3.2 Imputation

A dataset may contain various kinds of missing data, namely unobserved vari-
ables, and unobserved values for otherwise observed variables. We currently
deal only with this second kind of missing data. The process of guessing the
missing values is called imputation.

We provide the impute function to perform imputation.

> dataset <- BNDataset(data.file = "path/to/file.data",

+ header.file = "path/to/file.header")

> dataset <- impute(dataset)

Imputation is accomplished with the k-Nearest Neighbour algorithm. The
number of neighbours to be used can be chosen specifying the k.impute param-
eter (default is k.impute = 10). Given that the parameter is highly dataset-
dependant, we also include the tune.knn.impute function to assist the user
while choosing the best value for k.

3.3 Bootstrap

BNDataset objects have also room for bootstrap samples (Efron and Tibshirani
[2]), i.e. random samples with replacement of the original data with the same
number of observations, both for raw and imputed data. Samples for imputed
data are generated by imputing the corresponding sample of raw data. There-
fore, by requesting imputed samples, also the raw samples will be generated.

We provide the bootstrap method for this.

> dataset <- BNDataset("path/to/file.data",

+ "path/to/file.header")

> dataset <- bootstrap(dataset, num.boots = 100)

> dataset.with.imputed.samples <- bootstrap(dataset,

+ num.boots = 100,

+ imputation = TRUE)
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3.4 Using data

After a BNDataset has been created, it is ready to be used. The complete
list of methods available for a BNDataset object is available in the package
documentation; we are not going to cover all of the methods in this brief series
of examples.

For example, one may want to see the dataset.

> # the following are equivalent:

> print(dataset)

> show(dataset)

> dataset # from inside an R session

The show() method is an alias for the print() method, but allows to print
the state of an instance of an object just by typing its name in an R session.

The main operation that can be done with a BNDataset is to get the data
it contains. The main methods we provide are raw.data and imputed.data,
which provide the raw and the imputed data, respectively. The data must be
present in the object; conversely, an error will be raised. To avoid an abrupt
termination of the execution in case of error, one may run these methods in
a tryCatch() construct and manage the errors in case they happen. Another
alternative is to test the presence of data before attempting to retrieve it, using
the tester methods has.raw.data and has.imputed.data.

> options(max.print = 200, width = 60)

>

> dataset <- child()

> # if we want raw data

> raw.data(dataset)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

[1,] 2 3 3 NA 1 NA 1 1 2 1 1 1 NA 2 2

[2,] NA NA 2 1 1 2 1 2 2 1 2 1 2 2 NA

[3,] 2 3 1 2 1 NA NA 2 2 1 2 2 2 2 2

[4,] 2 4 1 1 1 3 NA 1 2 NA 3 NA 1 2 1

[5,] 2 2 1 NA 2 4 1 1 1 1 NA 1 NA 2 NA

[6,] NA 2 NA 2 1 4 NA 3 2 1 3 1 3 2 2

[7,] 2 2 1 2 NA 4 NA 3 NA 1 NA 1 1 NA NA

[8,] NA 1 1 NA 3 1 1 1 2 2 2 1 4 2 2

[9,] 2 3 2 2 1 3 1 2 2 1 2 1 2 2 2

[10,] 2 4 1 1 1 3 NA NA 2 NA 3 3 2 2 1

V16 V17 V18 V19 V20

[1,] 2 3 2 1 2

[2,] 2 2 1 2 2

[3,] 1 2 1 2 2

[4,] 3 1 NA 1 NA
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[5,] NA 1 1 2 2

[6,] 2 1 1 3 2

[7,] NA 1 1 1 NA

[8,] 1 1 NA 4 NA

[9,] NA 1 1 2 2

[10,] 1 1 2 2 NA

[ reached getOption("max.print") -- omitted 4990 rows ]

> # if we want imputed dataset: this raises an error

> imputed.data(dataset)

Error in imputed.data(dataset): The dataset contains no imputed data.

Please impute data before learning.

See > ?impute for help.

> # with tryCatch we manage the error

> tryCatch(

+ imp.data <- imputed.data(dataset),

+ error = function(e) {
+ cat("Hey! Something went wrong. No imputed data present maybe?")

+ imp.data <<- NULL

+ }
+ )

Hey! Something went wrong. No imputed data present maybe?

> imp.data

NULL

> # test before trying

> if (has.imputed.data(dataset)) {
+ imp.data <- imputed.data(dataset)

+ } else {
+ imp.data <- NULL

+ }
> imp.data

NULL

> # now perform imputation on the dataset

> dataset <- impute(dataset)

bnstruct :: performing imputation ...

bnstruct :: imputation finished.

> imputed.data(dataset)
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

[1,] 2 3 3 2 1 3 1 1 2 1 1 1 1 2 2

[2,] 2 4 2 1 1 2 1 2 2 1 2 1 2 2 1

[3,] 2 3 1 2 1 3 1 2 2 1 2 2 2 2 2

[4,] 2 4 1 1 1 3 1 1 2 1 3 1 1 2 1

[5,] 2 2 1 2 2 4 1 1 1 1 3 1 1 2 2

[6,] 2 2 1 2 1 4 1 3 2 1 3 1 3 2 2

[7,] 2 2 1 2 2 4 1 3 2 1 3 1 1 2 2

[8,] 2 1 1 2 3 1 1 1 2 2 2 1 4 2 2

[9,] 2 3 2 2 1 3 1 2 2 1 2 1 2 2 2

[10,] 2 4 1 1 1 3 1 2 2 1 3 3 2 2 1

V16 V17 V18 V19 V20

[1,] 2 3 2 1 2

[2,] 2 2 1 2 2

[3,] 1 2 1 2 2

[4,] 3 1 1 1 2

[5,] 1 1 1 2 2

[6,] 2 1 1 3 2

[7,] 1 1 1 1 2

[8,] 1 1 1 4 2

[9,] 1 1 1 2 2

[10,] 1 1 2 2 2

[ reached getOption("max.print") -- omitted 4990 rows ]

Complete cases of the raw dataset, that is, rows that have no missing data,
can be selected with the complete method. Please note that this method re-
turns a new copy of the original BNDataset with no imputed data or bootstrap
samples (if previously generated), as it is not possible to ensure consistence
among data. It is possible to restrict the completeness requirement only to a
subset of variables.

By default, learning operations on the raw dataset operate with available
cases.

> complete.subset <- complete(dataset)

>

> # require completeness only on a subset of variables

> complete.subset <- complete(dataset, c(1,4,7))

In order to retrieve bootstrap samples, one can use the boots and imp.boots

methods for samples made of raw and imputed data. The presence of raw and
imputed samples can be tested using has.boots and has.imputed.boots. Try-
ing to access a non-existent sample (e.g. imputed sample when no imputation
has been performed, or sample index out of range) will raise an error. The
method num.boots returns the number of samples.

We also provide the boot method to directly access a single sample.
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> # get raw samples

> for (i in 1:num.boots(dataset))

+ print( boot(dataset, i) )

> # get imputed samples

> for (i in 1:num.boots(dataset))

+ print( boot(dataset, i, use.imputed.data = TRUE) )

3.5 More advanced functions

It is also possible to manage the single fields of a BNDataset. See ?BNDataset

for more details on the structure of the object. Please note that manually filling
in a BNDataset may result in inconsistent instances, and therefore errors during
the execution.

It is also possible to fill in an empty BNDataset using the read.dataset

method.

4 Bayesian Networks

Bayesian Network are represented using the BN object. It contains information
regarding the variables in the network, the directed acyclic graph (DAG) repre-
senting the structure of the network, the conditional probability tables entailed
by the network, and the weighted partially DAG representing the structure as
learnt using bootstrap samples.

The following code will create a BN object for the Child network, with no
structure nor parameters.

> dataset <- child()

> net <- BN(dataset)

Then we can fill in the fields of net by hand. See the inline help for more
details.

The method of choice to create a BN object is, however, to create it from a
BNDataset using the learn.network method.

4.1 Network learning

When constructing a network starting from a dataset, the first operation we
may want to perform is to learn a network that may have generated that
dataset, in particular its structure and its parameters. bnstruct provides the
learn.network method for this task.
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> dataset <- child()

> net <- learn.network(dataset)

The learn.network method returns a new BN object, with a new DAG (or
WPDAG, if the structure learning has been performed using bootstrap – more
on this later).

Here we briefly describe the two tasks performed by the method, along with
the main options.

4.1.1 Structure learning

We provide five algorithms to learn the structure of the network, that can be
chosen with the algo parameter. The first is the Silander-Myllymäki (sm) exact
search-and-score algorithm (see Silander and Myllymaki [10]), that performs a
complete evaluation of the search space in order to discover the best network;
this algorithm may take a very long time, and can be inapplicable when discov-
ering networks with more than 25–30 nodes. Even for small networks, users are
strongly encouraged to provide meaningful parameters such as the layering of
the nodes, or the maximum number of parents – refer to the documentation in
package manual for more details on the method parameters.

The second algorithm is the Max-Min Parent-and-Children (mmpc, see Tsamardi-
nos, Brown, and Aliferis [12]), a constraint-based heuristic approach that discov-
ers the skeleton of the network, that is, the set of edges connecting the variables
without discovering their directionality.

Another heuristic algorithm included is a Hill Climbing method (hc, see
Tsamardinos, Brown, and Aliferis [12]).

The fourth algorithm (and the default one) is the Max-Min Hill-Climbing
heuristic (mmhc, Tsamardinos, Brown, and Aliferis [12]), based on the combina-
tion of the previous two algorithms, that performs a statistical sieving of the
search space followed by a greedy evaluation.

The heuristic algorithms provided are considerably faster than the complete
method, at the cost of a (likely) lower quality. Also note that in the case of
a very dense network and lots of obsevations, the statistical evaluation of the
search space may take a long time.

The last method is the Structural Expectation-Maximization (sem) algo-
rithm (Friedman [4, 5]), for learning a network from a dataset with missing
values. It iterates a sequence of Expectation-Maximization (in order to “fill
in” the holes in the dataset) and structure learning from the guessed dataset,
until convergence. The structure learning used inside SEM, due to compu-
tational reasons, is MMHC. Convergence of SEM can be controlled with the
parameters struct.threshold, param.threshold, max.sem.iterations and
max.em.iterations, for the structure and the parameter convergence and the
maximum number of iterations of SEM and EM, respectively.

Search-and-score methods also need a scoring function to compute an esti-
mated measure of each configuration of nodes. We provide three of the most pop-
ular scoring functions, BDeu (Bayesian-Dirichlet equivalent uniform, default),
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AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion).
The scoring function can be chosen using the scoring.func parameter.

> dataset <- child()

> net.1 <- learn.network(dataset,

+ algo = "sem",

+ scoring.func = "AIC")

> dataset <- impute(dataset)

> net.2 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "BDeu",

+ use.imputed.data = TRUE)

It is also possible to provide an initial network as starting point for the
structure search. This can be done using the initial.network argument, which
accepts three kinds of inputs:

• a BN object (with a structure);

• a matrix containing the adjacency matrix representing the structure of a
network;

• the string random.chain for starting from a randomly sampled chain-like
network.

In order to obtain reproducible results, in case a random chain is used it is
possible to provide an initial random seed.

> dataset <- child()

> net.1 <- learn.network(dataset,

+ initial.network = "random.chain",

+ seed = 12345)

> net.2 <- learn.network(dataset,

+ algo = "sem",

+ initial.network = net.1)

Prior knowledge can be given to the learning algorithm, by providing a lay-
ering of the variables. Variables can be grouped in (numbered) layers, and a
variable can only have parents in upper (lower-numbered) layers. In order to
specify this in the learning step, one supplementary argument has to be pro-
vided: layering, a vector containing the indices of the layers of each variable.
By default, the first layer contains variables with no parents, and variables in
layer j can have parents only in layers i ≤ j. Layering is useful also in case of
a Naive Bayes network, or when learning a Dynamic Bayesian Network, where
each time frame can be associated to a layer. How to learn a Dynamic Bayesian
Network is explained in Section 4.1.2, while an example of learning a Naive
Bayes network is given in Section 6.3.
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> layers <- c(1,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5)

> net.layer <- learn.network(dataset, layering = layers)

In case of more sophisticated layering requirements, some other optional ar-
guments can be provided. For sm, the available options to limit the number of
incoming arcs are max.parents.layers and max.parents. For hc, the corre-
sponding options are layer.struct and max.parents. mmpc, not considering
directed edges, takes instead layer.struct and max.fanin. Finally, for mmhc,
layer.struct, max.fanin, and max.parents are available. layer.struct and
max.parents.layers are used to allow or forbid edges between the layers de-
fined using the layering argument; max.parents bounds the number of in-
coming directed edges in a node, while max.fanin serves the same purpose for
non-directed edges.

When using hc, it is possible to provide also a predetermined skeleton, that
is, the undirected network whose edges will be the only ones considered by
the algorithm, using the init.cpc optional parameter. See also the method
documentation for more information.

It is also possible to enforce the presence of some edges, using the mandatory.edges
argument, that takes a binary matrix that takes 1 in position i,j if there must
be an edge from node i to node j.

The structure learning task by default computes the structure as a DAG. We
can however use bootstrap samples to learn what we call a weighted partially
DAG, in order to get a weighted confidence on the presence or absence of an
edge in the structure (Friedman, Goldszmidt, and Wyner [6]). This can be done
by providing the constructor or the learn.network method a BNDataset with
bootstrap samples, and the additional parameter bootstrap = TRUE.

> dataset <- child()

> dataset <- bootstrap(dataset, 100, imputation = TRUE)

> net.1 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "AIC",

+ bootstrap = TRUE)

> # or, for learning from imputed data

> net.2 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "AIC",

+ bootstrap = TRUE,

+ use.imputed.data = TRUE)

Structure learning can be performed also using the learn.structure method,
which has a similar syntax, only requiring as first parameter an already initial-
ized network for the dataset. More details can be found in the inline helper.

It is also possible to learn a WPDAG starting from a network with a DAG,
using the wpdag.from.dag method.
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4.1.2 Learning Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are Bayesian Networks that represent the
evolution in time of a system. The set of variables v1, v2, . . . vN of a DBN is
repeated over a certain number T of time steps, and variables in time slot j
can have descendents in the current or subsequent time steps k ≥ j but not in
the previous time steps i < j. From a structure learning point of view we can
therefore consider the task of learning a DBN as learning a layered larger BN.

In bnstruct we provide the wrapper method learn.dynamic.network for
assisting the user in learning DBNs. It works similarly to learn.network,
but an additional parameter num.time.steps can be provided, indicating the
number of time steps observed. It is assumed that the dataset is composed by
the variables v11 , v

1
2 , v

1
3 , . . . , v

1
N , v21 , v

2
2 , . . . , v

T
N over T instants.

By default, the DBN is divided into T layers, each layer corresponding to
a time slot, in which each variable can be parent of any other variable in the
same layer and in the following ones, while it is forbidden for any variable to be
parent of any other variable in the previous layers. It is possible to provide a
layering for the whole DBN using the layering parameter as explained in the
structure learning section, assigning each one of the N × T variables to a layer.

> # asia_2_layers is a toy example constructed purely for testing

> # purposes. It does not represent a real set of observations.

> #

> # It simulates a system with 8 nodes observed over 2 consecutive

> # time steps, of which we know the layering in each time slot.

> # The dataset contains therefore 16 variables observed.

> dataset <- BNDataset("asia_2_layers.data",

+ "asia_2_layers.header",

+ num.time.steps = 2,

+ starts_from = 0)

> dbn <- learn.dynamic.network(dataset, num.time.steps = 2)

If the BNDataset already contains the information about the number of time
steps, it is also possible to use learn.network, which will recognize the evolving
system and treat the network as a dynamic one.

> # asia_2_layers is a toy example constructed purely for testing

> # purposes. It does not represent a real set of observations.

> #

> # It simulates a system with 8 nodes observed over 2 consecutive

> # time steps, of which we know the layering in each time slot.

> # The dataset contains therefore 16 variables observed.

> dataset <- BNDataset("asia_2_layers.data",

+ "asia_2_layers.header",

+ num.time.steps = 2,

+ starts.from = 0)
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> dbn <- learn.network(dataset)

It is also possible to exploit knowledge about the layering in each time slot by
specifying the layering for just N variables; such layering will be unfolded over
the T time steps. However, in this case, any variable vx in time slot i will still
be considered a potential parent for variable vy in time slot j > i, even if such
relationship is forbidden in time slot i. The same applies for layer.struct.

> # asia_2_layers is a toy example constructed purely for testing

> # purposes. It does not represent a real set of observations.

> #

> # It simulates a system with 8 nodes observed over 2 consecutive

> # time steps, of which we know the layering in each time slot.

> # The dataset contains therefore 16 variables observed.

> dataset <- BNDataset("asia_2_layers.data",

+ "asia_2_layers.header",

+ num.time.steps = 2,

+ starts.from = 0)

> layers <- c(1,2,2,3,3,3,3,3)

> dbn <- learn.dynamic.network(dataset,

+ num.time.steps = 2,

+ layering = layers)

4.1.3 Empirical evaluation of structure learning algorithms

In this Section we show the results obtained by MMHC on available cases,
MMHC on imputed data and SEM, with the BDeu and BIC scoring functions.
Our testbed is composed by three networks available in the literature, Child (20
nodes), Alarm (37 nodes) and Hepar2 (70 nodes). For each network we consider
20 datasets of 1000 observations each, with 20% missingness. The results for the
three networks are reported, respectively, in Figures 1, 2 and 3. The datasets
have been generated using our package. All the numerical parameters are set
at their default value, and no prior knowledge of the network is assumed (e.g.
layering).

Each plot shows the distributions of both the Structural Hamming Distance
(SHD, the distance in terms of edges, on the vertical axis) from the original
network, and the time needed to obtain to learn the network (in seconds, on the
horizontal axis).

For all the three networks the overall best results are obtained using MMHC
with BDeu after dataset imputation. MMHC converges in few seconds even for
the large Hepar2 network; conversely, SEM takes from few minutes up to few
hours, often with worse results. SEM paired with BIC failed to converge in 24
hours for all the 20 datasets.

We report also the results obtained by the MMHC algorithm over a larger
network, Andes (223 nodes), using BDeu and BIC and three sets of datasets with
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Figure 1: SHD vs. running time of i) available case analysis with MMHC,
ii) kNN imputation followed by MMHC and iii) SEM, with both the BDeu
and the BIC scoring functions, on 20 datasets with 1000 observations and 20%
missingness sampled from the 20-nodes Child network (25 edges in the original
network).
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Figure 2: SHD vs. running time of i) available case analysis with MMHC,
ii) kNN imputation followed by MMHC and iii) SEM, with both the BDeu
and the BIC scoring functions, on 20 datasets with 1000 observations and 20%
missingness sampled from the 37-nodes Alarm network (46 edges in the original
network).
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Figure 3: SHD vs. running time of i) available case analysis with MMHC, ii)
kNN imputation followed by MMHC and iii) SEM, with both the BDeu and
the BIC scoring functions, on 20 datasets with 1000 observations and 20% miss-
ingness sampled from the 70-nodes Hepar2 network (123 edges in the original
network).
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Figure 4: SHD vs. running time of MMHC on complete datasets of i) 100
observations, ii) 1000 observations and iii) 10000 observations sampled from the
223-nodes Andes network (338 edges in the original network).
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100, 1000 and 10000 observations each. In Figure 4 we show the results in terms
of SHD with respect to the original network, and in terms of convergence time.
In this case there is no significant difference in terms of time between the two
scoring functions. The trend observed, with the learning from the datasets with
1000 observations being the slowest one, is a bit surprising, and can be explained
with the fact that with fewer data, the statistical pruning is less effective but the
computation of the score for each possible parent set is faster, while for larger
datasets computing the score for one candidate parent set is more expensive,
but there are less candidates to evaluate, as MMPC is more effective; with 1000
observations, in this case we observe an unlucky combination of relatively high
computing time over a larger set of candidates.

In terms of solution quality, the results clearly improve as the size of the
dataset grows. For 10000 observations BDeu finds slightly better networks, in
terms of similarity with the original one, than BIC, while for smaller datasets
BIC is significantly more robust. The main difference, however, is given by the
number of observations available: with 100 observations, effectively a p > n
case, the quality of the discovered networks is very poor, and it improves as
the size of the datasets grows, having up to the 75% of correctness with 10000
observations.

4.1.4 Parameter learning

Parameter learning is the operation that learns the conditional probabilities
entailed by a network, given the data and the structure of the network. In
bnstruct this is done by learn.network performing a Maximum-A-Posteriori
(MAP) estimate of the parameters. It is possible to choose if using the raw
or the impute dataset (use.imputed.data parameter), and to configure the
Equivalent Sample Size (ess parameter).

In case of using bootstrap samples, learn.network will not perform param-
eter learning.

bnstruct also provides the learn.params method for this task alone.
The package also provides a method for learning the parameters from a

dataset with missing values using the Expectation-Maximization algorithm. In-
structions to do so are provided in section 5.1.

5 Using a network

Once a network is created, it can be used. Here we briefly mention some of
the basic methods provided in order to manipulate a network and access its
components.

First of all, it is surely of interest to obtain the structure of a network. The
bnstruct package provides the dag() and wpdag() methods in order to access
the structure of a network learnt without and with bootstrap (respectively).
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> dag(net)

> wpdag(net)

Then we may want to retrieve the parameters, using the cpts() method.

> cpts(net)

Another common operation that we may want to perform is displaying the
network, or printing its main informations, using the plot(), print() and
show() methods. Note that the plot() method is flexible enough to allow
some custom settings such as the choice of the colors of the nodes, and, more
importantly, some threshold settings for the networks learnt with bootstrap. As
default, the DAG of a network is selected for plotting, if available, otherwise the
WPDAG is used. In case of presence of both the DAG and the WPDAG, in order
to specify the latter as structure to be plotted, the plot.wpdag logical parameter
is provided. As usual, more details are available in the inline documentation of
the method.

> plot(net) # regular DAG

> plot(net, plot.wpdag=T) # wpdag

The plot() method by default uses the Rgraphviz, and it corresponds to
plot(net, method="default"). More advanced plotting functionalities are
available using the Rpackageqgraph package, via plot(net, method="qgraph").
With method="qgraph" it is possible to specify the optional arguments avail-
able for the qgraph::qgraph() method; for the full list of parameters and their
effect, please refer to the documentation of the qgraph package [3].

> plot(net, method="qgraph",

+ label.scale.equal=T,

+ node.width = 1.6,

+ plot.wpdag=T)

As it is for BNDatasets, we have several equivalent options to print a network.

> # TFAE

> print(net)

> show(net)

> net

For large biological networks it might be convenient to use some external
specific tool for visualization. We provide the write.xgmml method to export a
network in the XGMML format, that can be then used for example with Cytoscape.

20



> write.xgmml(net)

5.1 Inference

Inference is performed in bnstruct using an InferenceEngine object. An
InferenceEngine is created directly from a network.

> dataset <- child()

> net <- learn.network(dataset)

> engine <- InferenceEngine(net)

Optionally, a list of observations can be provided to the InferenceEngine, at
its creation or later on. The list of observations is a list of two vector, one for the
observed variables (variable indices or names can be provided, not necessarily in
order - better is to list them in order of observation), and one for the observed
values for the corresponding variables. In case of multiple observations of the
same variable, the last one (the most recent one) is considered.

> dataset <- child()

> net <- learn.network(dataset)

>

> # suppose we have observed variable 1 taking value 2

> # and variable 4 taking value 1:

> obs <- list("observed.vars" = c(1,4),

+ "observed.vals" = c(2,1))

>

> # the following are equivalent:

> engine <- InferenceEngine(net, obs)

>

> # and

> engine <- InferenceEngine(net)

> observations(engine) <- obs

The InferenceEngine class provides methods for belief propagation, that is,
updating the conditional probabilities according to observed values, and for the
Expectation-Maximization (EM) algorithm ([1]), which learns the parameters
of a network from a dataset with missing values trying at the same time to guess
the missing values.

Belief propagation can be done using the belief.propagation method. It
takes an InferenceEngine and an optional list of observations. If no obser-
vations are provided, the engine will use the ones it already contains. The
belief.propagation method returns an InferenceEngine with an updated.bn

updated network.
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> obs <- list("observed.vars" = c(1,4),

+ "observed.vals" = c(2,1))

> engine <- InferenceEngine(net)

> engine <- belief.propagation(engine, obs)

> new.net <- updated.bn(engine)

The EM algorithm is instead performed by the em method. Its arguments are
an InferenceEngine and a BNDataset (optionally: a convergence threshold,
the Equivalent Sample Size ess and the maximum number of iterations max.em.iterations),
and it returns a list consisting in an updated InferenceEngine and an updated
BNDataset.

> dataset <- child()

> net <- learn.network(dataset)

> engine <- InferenceEngine(net)

> results <- em(engine, dataset)

> updated.engine <- results$InferenceEngine

> updated.dataset <- results$BNDataset

6 Three small but complete examples

Here we show two small but complete examples, in order to highlight how the
package can provide significant results with few instructions.

6.1 Basic Learning

First we show how some different learning setups perform on the Child dataset.
We compare the default mmhc-BDeu pair on available case analysis (raw data
with missing values) and on imputed data, and the sem-BDeu pair.

> dataset <- child()

>

> # learning with available cases analysis, MMHC, BDeu

> net <- learn.network(dataset)

> plot(net)

>

> # learning with imputed data, MMHC, BDeu

> imp.dataset <- impute(dataset)

> net <- learn.network(imp.dataset, use.imputed.data = TRUE)

> plot(net)
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> # SEM, BDeu using previous network as starting point

> net <- learn.network(dataset, algo = "sem",

+ scoring.func = "BDeu",

+ initial.network = net,

+ struct.threshold = 10,

+ param.threshold = 0.001)

> plot(net)

> # we update the probabilities with EM from the raw dataset,

> # starting from the first network

> engine <- InferenceEngine(net)

> results <- em(engine, dataset)

> updated.engine <- results$InferenceEngine

> updated.dataset <- results$BNDataset
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6.2 Learning with bootstrap

The second example is about learning with bootstrap. This time we use the
Asia dataset.

> dataset <- asia()

> dataset <- bootstrap(dataset)

> net <- learn.network(dataset, bootstrap = TRUE)

>

> plot(net)

6.3 Naive Bayes

Finally, we show an example of the learning task of a Naive Bayes network.
Suppose we have a mail dataset, equally divided in spam and legitimate mails.
We consider four words: buy and med mainly associated to spam mails, and
bnstruct and learning, observed in legitimate mails. We can divide the vari-
ables in two layers: one containing only the target variable, and the second one
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with the words. We then specify the presence or absence of edges in each layer,
and among the layers. Edges from lower layers to upper layers are forbidden.
For this we need to define a binary squared matrix with as many rows and
columns as the number of layers, so in our example we need a 2x2 matrix. Each
entry mi,j of the matrix contains 0 if no edges can go from variables in layer i
to variables in layer j, and 1 if the presence of such edges is allowed; the matrix
should be upper triangular, and it will be transformed as such if it is not.

As our Naive Bayes network has edges only from the target variable to the
word variables, and not between variables in layer 2, we want edges only in m1,2,
so we set that cell to 1 and all the others to 0.

> # artificial dataset generation

> spam <- sample(c(0,1), 1000, prob=c(0.5, 0.5), replace=T)

> buy <- sapply(spam, function(x) {
+ if (x == 0) {
+ sample(c(0,1),1,prob=c(0.8,0.2),replace=T)

+ } else {
+ sample(c(0,1),1,prob=c(0.2,0.8))}
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+ })
> med <- sapply(spam, function(x) {
+ if (x == 0) {
+ sample(c(0,1),1,prob=c(0.95,0.05),replace=T)

+ } else {
+ sample(c(0,1),1,prob=c(0.05,0.95))}
+ })
> bns <- sapply(spam, function(x) {
+ if (x == 0) {
+ sample(c(0,1),1,prob=c(0.01,0.99),replace=T)

+ } else {
+ sample(c(0,1),1,prob=c(0.01,0.99))}
+ })
> lea <- sapply(spam, function(x) {
+ if (x == 0) {
+ sample(c(0,1),1,prob=c(0.05,0.95),replace=T)

+ } else {
+ sample(c(0,1),1,prob=c(0.95,0.05))}
+ })
> d <- as.matrix(cbind(spam,buy,med,bns,lea))

> colnames(d) <- c("spam","buy","med","bnstruct","learn")

> library(bnstruct)

> spamdataset <- BNDataset(d, c(T,T,T,T,T),

+ c("spam","buy","med","bnstruct","learn"),

+ c(2,2,2,2,2), starts.from=0)

> n <- learn.network(spamdataset,

+ algo="mmhc",

+ layering=c(1,2,2,2,2),

+ layer.struct=matrix(c(0,0,1,0),

+ c(2,2)))

> plot(n)
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