
arulesCBA: Classification for Factor and

Transactional Data Sets Using Association Rules

Ian Johnson
Southern Methodist University

Abstract

This paper presents an R package, arulesCBA, which uses association rules mined with
the apriori algorithm from arules to build a classifier for discrete or transactional data
sets. The package also provides an interface to use an association-rule classifier to predict
classes for new data entries. The classification algorithm implemented in arulesCBA
performs competitively when compared to existing discrete classification algorithms.

Keywords: data mining, classification, association rules, R.

1. Introduction

Association rule mining is a well-established strategy for discovering relationships among
attributes of discrete, factor, and transactional data sets. Existing R packages such as arules
provide interfaces to C implementations of fast association rule mining algorithms such as
apriori. For the purpose of this paper, association rule mining will be treated as a black
box, as association rules for the classification algorithm in arulesCBA will be mined using the
apriori interface in arules. The rules mined from the algorithm will have five relevant fields.
The first three: lift, support, and confidence, are statistical measures of the strength of an
association rule which will be discussed in later sections. The final attributes of an association
rule are the predicate, or left-hand-side of the rule, and the class, or the right-hand-side of the
rule. The predicate of a rule is the set of elements in a row of data which are associated with
the resulting class of the rule. The classification algorithm in arulesCBA uses a special type
of association rule where the right-hand-side is a set of size one (called a class). These rules
are called CARs (Class Association Rules). The remainder of the paper will be organized as
follows: first, the R interface of the arulesCBA will be explored, then the CBA algorithm will
be detailed, and then an example of using the arulesCBA interface to classify the Iris data
set from the R package datasets will be provided.

2. The arulesCBA Interface

The arulesCBA package provides four user-facing functions: CBA, predict, rules, and print.
The functions rules and print functions simply return the rules of a CBA classifier object
and print the important information about a CBA object, respectively. The CBA and predict

functions are used to build a classifier from an existing data set, and to predict classes for an
incoming data set, respectively.

2arulesCBA: Classification for Factor and Transactional Data Sets Using Association Rules

2.1. The CBA Function

The function CBA provides an R interface to a C implementation of the CBA algorithm used
to generate a classifier. The function accepts two required arguments, and three option
arguments. The required arguments, data and class, must contain the data set for which
a classifier will be built, and a character vector with the name of the column of the data
set which will be used as the class variable. The argument data must be a data.frame or
a transaction matrix from the arules package, and it must include a column whose name is
equal to the argument class.

The optional arguments, support, confidence, and verbose, are used to provide parameters
to the apriori interface from the arules package. The argument support, set to 0.2 by
default, is used to set a minimum support value for the association rules mined from apriori.
Likewise, the argument confidence, set to 0.8 by default, is used to set a minimum confidence
value for the association rules mined from apriori. Finally, the verbose argument, set to
FALSE by default, can be used to print out diagnostic run-time information from within the
CBA and apriori functions.

The following are an examples of valid calls to the CBA function:

> classifier <- CBA(formula, data)

> classifier <- CBA(formula data, confidence = 0.95, verbose = TRUE)

These are only valid calls to the CBA function if the following conditions are met:

• The object formula contains a symbolic description of the model to be fitted. The only
model type currently supported is of the from class ~ ., where class is the name of
the class variable.

• The object data is a data.frame whose columns are all factors, or an arules transaction
object.

• The column in date representing the class is not allowed to have missing values.

The object returned by the CBA function is a CBA object, which is a list with three elements:
rules, default, and levels. The object rules is an ordered vector of arules association rules
which are used for classification. The object default is a character vector of size 1 which
holds the default class for the classifier, which will be discussed in later sections. Finally,
levels is a vector of all of the possible classes for an object being sent to the classifier.

The rules object can be extracted from the CBA object using the function rules(CBA). The
default and levels objects are only used internally in the predict function.

2.2. The Predict Function

The function predict is used to apply a CBA classifier to a new set of data to be classified.
The function accepts only two arguments, object and newdata, which are the CBA object
and the new data set to be classified, respectively. The CBA classifier object can be sent to
predict directly from the CBA function. The newdata object must be a data.frame or arules
transaction object whose columns match those used to build the original classifier.

The following is an example of a valid call to the predict function, where a data.frame
dataset is split into training and testing sets which are used to build a CBA classifier,
and then use it, respectively:

Ian Johnson 3

> className <- colnames(data)[1]

> training <- data[1:750,]

> testing <- data[751, 1000]

> classifier <- CBA(training, className)

> classes <- predict(classifier, testing)

This is correct use of the predict function if all conditions are met for the CBA function, where
in this example dataset is a data.frame. After executing this code, the objects classes and
data[,1] should be similar, or exactly the same if the classifier worked with 100% accuracy.
A cursory examination of the success of the prediction can be done using table(classes)

and table(data[,1]). A more in-depth comparison can be done by computing a confusion
matrix.

3. The CBA Algorithm

The CBA (Classification Based on Association rules) algorithm used in arulesCBA is adapted
from Liu, et al., 1998. The algorithm is split up into three stages, each of which is imple-
mented in C and interfaced from R through arulesCBA. The non-performance-critical and
data formatting operations are completed in R, while performance-critical operations take
place in C.

3.1. Stage 0

Prior to the three stages of the CBA algorithm, a number of preconditions must be met. Prior
to stage 1 of the algorithm, therefore, a stage 0 occurs to establish those preconditions. First,
a set of association rules must be generated. This is completed using a call to apriori from
arules. These rules are then sorted primarily based on their confidence, and then by their
support and lift. Confidence is a measure of how frequently the predicate of an association
rule correctly predicts the class of a data entry. For a rule whose predicate predicts the class
in every case, the confidence value is 1. It is therefore the primary tool for ranking association
rules for use in a classifier. Generating association rules, and sorting them as described above,
is achieved as follows:

> rules <- apriori(ds.mat, ...)

> rules.sorted <- sort(rules, by=c("confidence", "support", "lift"))

Note that the call to apriori includes a number of additional parameters to guarantee that
the mined rules will be useful for the classifier, but those parameters have been redacted for
simplicity.

The data input to the classifier must also be formatted as an arules transaction object, and
two matrices are constructed, rulesMatchLHS and rulesMatchRHS, which identify which rules
from the mined ruleset correspond to the predicate and class of which data entries in the input
data set. The matrices are generated as follows:

> rulesMatchLHS <- is.subset(lhs(rules.sorted), ds.mat)

> rulesMatchRHS <- is.subset(rhs(rules.sorted), ds.mat)

In this version of arulesCBA, dense matrices are used for rulesMatchLHS and rulesMatchRHS.
Future versions will use sparse matrices for memory efficiency.

4arulesCBA: Classification for Factor and Transactional Data Sets Using Association Rules

A number of other data structures are instantiated and organized for later use, but their
purpose, while critical to functionality, is not critical to understanding the algorithm, and
they have therefore been omitted from this description of the algorithm. This description of
the CBA algorithm is simplified considerably for the sake of clarity. It provides more than
enough information to be able to use the arulesCBA interface confidently.

3.2. Stage 1

In stage 1 of the CBA algorithm, a linear pass is made through the entire input data set, and
a set A is built of all falsely classified record. A falsely classified record is one which matches
the left-hand-side of a rule in the classifier but whose class doesn’t match the right-hand-side
of that rule. Each falsely classified record in A is stored alongside a corresponding crule and
wrule for the record. A crule (correct rule) is a rule which matches an entry on both the left
and right-hand-sides of the rule, while a wrule (wrong rule) is a rule which matches an entry
on the left-hand-side, but not the right-hand-side. Stage 1 of the algorithm also builds a list
of strong rules, rules which correctly identify entries in the input data set and will therefore
be used in the final classifier.

3.3. Stage 2

Stage 2 of the CBA processes the set A to find possible replacement rules for the wrules which
falsely classified records. This stage performs a linear pass through A, a subset of the input
data set. For each element in A, a list of possible replacement rules for the crule identified
is generated and added to a new set, replace, which will be used in stage 3. A possible
replacement rule is defined as any rule which correctly classifies the data entry in question.

3.4. Stage 3

In stage 3, the final stage of the CBA algorithm, the set replace is processed, and a final
classifier is built. A linear pass is made through the set of association rules which have been
labeled as strong rules. For each rule, all possible replacement rules identified in replace are
evaluated for possible replacement. If the replacement rules correctly classify a record, they
are prioritized over the rule to be replaced. As the set is processed, information is maintained
about how many elements from the original data set are correctly and incorrectly classified
by the set of already-processed rules. At each rule, the number of falsely classified records is
stored in a set totalErrors. After every rule has been processed, the classifier is built as the
subset of the original rule set up to the index of the minimum number of class errors in the
totalErrors set. This classifier is then returned with a default class via the R interface in
arulesCBA.

4. Using arulesCBA

The following is an example of how arulesCBA can be used to classify flowers from the Iris

data set in the datasets package. The Iris data set is a set of 150 observations of 5 variables.
The first 4 variables are continuous measures of petal and sepal length of flowers. The 5th
variable is the species of the flower. This will be used as the class for the classification process.

Ian Johnson 5

4.1. Installing arulesCBA

Prior to executing the following example, install arulesCBA using: install.packages("arulesCBA")

To install the most recent development version, use: > install_github("ianjjohnson/arulesCBA").

install_github is available through the devtools package.

4.2. Loading Required Packages

To load the arulesCBA package, as well as the caret package, which is used for assessing the
results of the classifier, use:

> library(arulesCBA)

Note that the package caret can be installed using install.packages(caret).

4.3. Discretizing the Data

arulesCBA now performs discretization within the CBA and bCBA functions. Custom dis-
cretization can be used, but most state-of-the art class-based discretization strategies are
already supported. Discretization method can be specified using the disc.method parameter
to CBA or bCBA.

> data(iris)

4.4. Building the Classifier

Building the classifier can be done with a simple call to the CBA function:

> classifier <- CBA(Species ~ ., iris, supp = 0.05, conf=0.9)

Note that the second parameter to the CBA function, class, is the name of the column of
iris.disc which contains the class of each entry. Also recall that the iris.disc data must
be convertible to arules transaction data at this point in execution.

Basic information about the classifier can be found using the print function:

> classifier

CBA Classifier Object

Class: Species=setosa, Species=versicolor, Species=virginica

Default Class: Species=setosa

Number of rules: 8

Classification method: first

Description: CBA algorithm by Liu, et al. 1998 with support=0.05 and

confidence=0.9

6arulesCBA: Classification for Factor and Transactional Data Sets Using Association Rules

4.5. Accessing the Rules of the Classifier

The rules as an arules rule list can be retreived using:

> rules(classifier)

set of 8 rules

The association rules of the classifier can be read found seen using:

> inspect(rules(classifier))

lhs rhs support confidence lift count

[1] {Petal.Length=[-Inf,2.45)} => {Species=setosa} 0.33 1.00 3.0 50

[2] {Sepal.Length=[6.15, Inf],

Petal.Width=[1.75, Inf]} => {Species=virginica} 0.25 1.00 3.0 37

[3] {Sepal.Length=[5.55,6.15),

Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.14 1.00 3.0 21

[4] {Sepal.Width=[-Inf,2.95),

Petal.Width=[1.75, Inf]} => {Species=virginica} 0.11 1.00 3.0 17

[5] {Sepal.Length=[6.15, Inf],

Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.08 1.00 3.0 12

[6] {Sepal.Width=[2.95,3.35),

Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.08 1.00 3.0 12

[7] {Petal.Width=[1.75, Inf]} => {Species=virginica} 0.30 0.98 2.9 45

[8] {Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.29 0.98 2.9 44

4.6. Using the Classifier

Once the classifier has been built, it can be used to classify the training data set as a cursory
test of its accuracy using a simple call to predict:

> pred <- predict(classifier, iris)

> head(pred)

[1] setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

> table(pred)

pred

setosa versicolor virginica

59 45 46

Ian Johnson 7

This table shows that the arulesCBA classifier predicted that there is a 50-48-52 split of the
3 species in the test data.

4.7. Checking the Results

In order to ascertain the quality of the predicted classes, we can create a simple confusion
matrix:

> table(pred, truth = iris$Species)

truth

pred setosa versicolor virginica

setosa 50 5 4

versicolor 0 44 1

virginica 0 1 45

More sophisticated confusion matrices can be created using packages like caret or gmodels.

Affiliation:

Ian Johnson
Computer Science and Engineering
Southern Methodist University
Dallas, Texas
E-mail: ianjjohnson@icloud.com
URL: http://www.ianjjohnson.com

mailto:ianjjohnson@icloud.com
http://www.ianjjohnson.com

	Introduction
	Interface
	CBA
	predict

	algorithm
	stage0
	stage1
	stage2
	stage3

	example
	install
	libs
	disc
	cba
	rules
	predict
	results

