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1 Multi-state models

A multi-state model is used to model a process where subjects transition from one state to the
next. For instance, a standard survival curve can be thought of as a simple multi-state model with
two states (alive and dead) and one transition between those two states. A diagram illustrating
this process is shown in the top left corner of figure 1. In these types of diagrams, each box is a
state and each arrow is a possible transition. The top right diagram depicts a classic competing
risk analysis, where all subjects start on the left and each subject can make a single transition to
one of 3 terminal states. The bottom left diagram shows a common multi-state situation known
as the illness-death model with recovery. Finally, the lower right diagram represents sequential
events, such as repeated infections in the CGD study. In that case one subject had 8 events so
there are 9 states corresponding to entry into the study (0 infections) and the first, second, . . . ,
eighth events.

As will be shown below, there are often multiple choices for the state and transition diagram,
and for some data sets it is revealing to look at a problem from multiple views. In addition to
deciding the diagram that best matches the research questions, the two other primary decisions
are the choice of time scale for the fits, e.g., time from entry in the study vs. time from entry in
the state, and what covariates will be used.

2 Multi-state curves

2.1 Aalen-Johansen estimate

As a starting point for the analysis, it is important to compute and plot estimates of p(t), which
is a vector containing the probability of being in each of the states at time t. If there is no
censoring then p becomes a simple tabulation at time t of all the states. For the general case,
we compute this using the Aalen-Johansen estimate via the survfit function.

Mathematically the estimate is simple. For each unique time where an event occurs, form the
transition matrix T (t) with elements or rates of λij(t) = the fraction of subjects who transition
from state i to j at time t, among those in state i just prior to time t. (T is equal to the identity
matrix at any time point without an observed transition.) Then

p(t) = p(0)
∏
s≤t

T (s) (1)
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Figure 1: Four multi-state models. The upper left panel depicts simple survival, the upper right
is an example of competing risks, the lower left panel is a multi-state illness-death model, and
the lower right panel depicts sequential events.
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where p(0) is the initial distribution of subjects.
Let’s work this out for the simple two-state alive → death model. Let n(t) be the number

of subjects still at risk at time t and d(t) the number of deaths at that time point. All subjects
start in the alive state and thus p(0) = (1, 0) and the transition matrix is

T (s) =

 n(s)−d(s)
n(s)

n(s)
d(s)

0 1


The second row corresponds to the fact that death is an absorbing state.

Writing out the matrices for the first few transitions and multiplying them leads to

p1(t) =
∏
s≤t

[n(s)− d(s)] /n(s) (2)

which we recognize as the Kaplan-Meier estimate of survival. For the two state alive-dead model
the Aalen-Johansen (AJ) estimate has reprised the KM. In the competing risks case p(t) has an
alternate form known as the cumulative incidence (CI) function

CIk(t) =

∫ t

0

λk(u)S(u−)du (3)

where λk is the incidence function for outcome k, and S is the overall survival curve for “time
to any endpoint”. (The label “cumulative incidence” is one of the more unfortunate ones in the
survival lexicon, since we normally use ‘incidence’ and ‘hazard’ as interchangeable synonyms but
the CI is not a cumulative hazard.) Repeating the same matrix exercise for the competing risks,
i.e. writing out the Aalen-Johansen computation, exactly recovers the CI formula. The CI is
also a special case of the Aalen-Johansen. The AJ estimate is very flexible; subjects can visit
multiple states during the course of a study, subjects can start after time 0 (delayed entry), and
they can start in any of the states. The survfit function implements the AJ estimate and will
handle all these cases.

The standard error of the estimates is computed using an infinitesimal jackknife. Let D(t)
be a matrix with one row per subject and one column per state. Each row contains the change
in p(t) corresponding to subject i, i.e., the derivative of p with respect to the ith subject’s case
weight dp(t)/dwi. Then V (t) = D′D is the estimated variance-covariance matrix of the estimates
at time t.

The p(t) vector obeys the obvious constraint that its sum at any time is equal to one; each
person has to be somewhere. I prefer the label current prevalence estimate, since it estimates
what fraction of the subjects are in any given state across time. However the word “prevalence”
is likely to generate confusion whenever death is one of the states, due to its traditional use as
the fraction of living subjects who have a particular condition. We will use the phrase probability
in state or simply p from this point forward.

In the simple two state model Pr(alive) is the usual KM survival estimate, and we have
p1(t) = 1− p2(t), Pr(alive) = 1 - Pr(dead). Plots for the 2 state case sometimes choose to show
Pr(alive) and sometimes Pr(dead). Which one is used often depends on a historical whim of the
disease specialty; cardiology journals for instance quite often use Pr(event) resulting in curves
that rise starting from zero, while oncology journals invariably use Pr(alive) giving curves that
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Figure 2: Three models for the MGUS data.

fall downhill from 1. The survfit routine’s historical default for the 2 state case is to print
and plot Pr(alive)= p1(t), which reflects that the author of the routine was working primarily in
cancer trials at the time said default was chosen.

For simple survival we have gotten used to the idea of using Pr(dead) and Pr(alive) inter-
changeably, but that habit needs to be left behind for multi-state models, as curves of 1− pk(t)
= probability(any other state than k) are not useful. In the multi-state case, individual curves
can go both up and down. For competing risks the curve for the initial state (leftmost in the
diagram) is rarely included in the final plot. Since the curves sum to 1, the full set is redundant.
Pr(nothing yet) is usually the least interesting of the set and so it is left off to make the plot
less busy. The remaining curves in the competing risks case rise from 0. (This bothers some
researchers as it ’just looks wrong’ to them.)

2.2 Examples

Start with a simple competing risks problem as illustrated in the first diagram of figure 2. The
mgus2 data set contains the time to plasma cell malignancy (PCM) and/or death for 1384 subjects
diagnosed with monoclonal gammopathy of undetermined significance (MGUS). Survival and
progression time are in months. The code below creates an ordinary Kaplan-Meier curve of
post-diagnosis survival for these subjects, along with a histogram of age at diagnosis. The mean
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age at diagnosis is just over 70 years.

> oldpar <- par(mfrow=c(1,2))

> hist(mgus2$age, nclass=30, main='', xlab="Age")

> with(mgus2, tapply(age, sex, mean))

F M

71.32171 69.67065

> mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2)

> mfit1

Call: survfit(formula = Surv(futime, death) ~ sex, data = mgus2)

n events median 0.95LCL 0.95UCL

sex=F 631 423 108 100 121

sex=M 753 540 88 79 97

> plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2,

xlab="Years post diagnosis", ylab="Survival")

> legend("topright", c("female", "male"), col=1:2, lwd=2, bty='n')

> par(oldpar)
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The xscale and yscale arguments to plot.survfit affect only the axis labels, not the data.
Further additions to the plot region such as legend, lines, or text remain in the original scale.
This simplifies programmatic additions such as adding another curve to the plot, while making
interactive additions such as a legend somewhat less simple.
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As a second model for these subjects we will use competing risks with PCM and death
without malignancy as the two terminal states, as shown in the upper left of figure 2. For
this model we are only interested in the first event for each subject. Formally we are treating
progression to a PCM as an absorbing state, i.e., one that subjects never exit. We create a
variable etime containing the time to the first of progression, death, or last follow-up along
with an event variable that contains the outcome. The starting data set mgus2 has two pairs
of variables (ptime, pstat) that contain the time to progression and (futime, status) that
contain the time to death or last known alive. The code below creates the necessary etime and
event variables, then computes and plots the competing risks estimate.

> etime <- with(mgus2, ifelse(pstat==0, futime, ptime))

> event <- with(mgus2, ifelse(pstat==0, 2*death, 1))

> event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))

> table(event)

event

censor pcm death

409 115 860

> mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2)

> print(mfit2, rmean=240, scale=12)

Call: survfit(formula = Surv(etime, event) ~ sex, data = mgus2)

n nevent mean*

sex=F, pcm 631 59 1.323284

sex=M, pcm 753 56 1.064693

sex=F, death 631 370 8.823108

sex=M, death 753 490 10.260294

sex=F, 631 0 9.853608

sex=M, 753 0 8.675012

*mean time in state, restricted (max time = 20 )

> mfit2$transitions

to

from pcm death

pcm 0 0

death 0 0

115 860

> plot(mfit2, col=c(1,2,1,2), lty=c(2,2,1,1),

mark.time=FALSE, lwd=2, xscale=12,

xlab="Years post diagnosis", ylab="Probability in State")

> legend(240, .6, c("death:female", "death:male", "pcm:female", "pcm:male"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')
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The mfit2 call is nearly identical to that for an ordinary Kaplan-Meier, with the exception
of the event variable.

1. The event variable was created as a factor, whereas for ordinary single state survival the
status is either 0/1 or TRUE/FALSE. The first level of the factor must be censoring,
which is the status code for those whose follow-up terminated without reaching a new
endpoint. Codes for the remaining states can be in any order. The labels for the states are
unrestricted, e.g., the first one does not have to be “censor”. (It will however be treated as
censoring, whatever the name.)

2. A simple print of the mfit2 object shows the order in which the curves will be displayed.
This information was used to choose the line types and colors for the curves.

3. The mfit2 object contains curves for all the states, but by default the entry state will not
be plotted. The remaining curves all start at 0.

4. The transitions component of the result is useful as a data check, e.g., if it showed a
transition from death to PCM.

5. Each subject’s initial state is specified by the istate argument. When this is omitted all
subjects are assumed to start from an entry state named “ ” (the empty string), as seen in
the printout above.

The printout shows that a male subject will spend, on average, 8.7 of his first 20 years post
diagnosis in the entry state, 1.1 years in the PCM state and 10.3 of those 20 in the death state.
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If a cutoff time is not given the default is to use the maximum observed time for all curves, which
is 424 months in this case.

The result of a multi-state survfit is a matrix of probabilities with one row per time and one
column per state. First are the states found in the event variable (excluding censoring) and then
the states found in the istate variable, removing any duplicates. By default any unnamed state
is not plotted – point 3 above – for the simple reason that multiple event curves can very quickly
get overcrowded with all the multiple lines. Since the three MGUS states of entry/pcm/death
must sum to 1 at any given time (everyone has to be somewhere), one of the three curves is
redundant and the “fraction still in the entry state” curve is normally the least interesting. One
can easily add this last state to the plot if desired, e.g., lines(mfit2[,3], col=4, lty=1:2),
since entry is the third state in the printout. (One can use, e.g., mfit2[, ’pcm’] to select a
state as well, but an empty string does not work as the subscript.)

A common mistake with competing risks is to use the Kaplan-Meier separately on each event
type while treating other event types as censored. The next plot is an example of this for the
PCM endpoint.

> pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2)

> plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12,

xlab="Years post diagnosis", ylab="Fraction with PCM")

> lines(mfit2[2,1], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE)

> legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"),

col=1, lwd=2, lty=c(1,2), bty='n')
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There are two problems with the pcmbad fit. The first is that it attempts to estimate the
expected rate of plasma cell malignancy (PCM) if all other causes of death were to be disallowed.
In this hypothetical world it is indeed true that many more subjects would progress to PCM (the
incorrect curve is higher), but it is also not a world that any of us will ever inhabit. This author
views the result in much the same light as discussions of survival after the zombie apocalypse.
The second problem is that the computation for this hypothetical case is only correct if all of
the competing endpoints are independent, a situation which is almost never true. We thus have
an unreliable estimate of an uninteresting quantity. The competing risks curve, on the other
hand, estimates the fraction of MGUS subjects who will experience PCM, a quantity sometimes
known as the lifetime risk, and one which is actually observable.

The last example chose to plot only a subset of the curves, something that is often desirable
in competing risks problems to avoid a “tangle of yarn” plot that simply has too many elements.
This is done by subscripting the survfit object. For subscripting, multi-state curves behave
as a matrix with the outcomes as the second subscript. The columns are in order of the levels
of event, i.e., as displayed by our earlier call to table(event). The first subscript indexes the
groups formed by the right hand side of the model formula, and will be in the same order as
simple survival curves. Thus mfit2[2,1] corresponds to males (2) and the PCM endpoint (1).
Curves are listed and plotted in the usual matrix order of R.

A third example using the MGUS data treats it as a multi-state model and it shown in the
upper right of figure 2. In this version a subject can have multiple transitions and thus multiple
rows in the data set. In this case it is necessary to identify which data rows go with which
subject via the id argument of survfit; valid estimates of the curves and their standard errors
both depend on this. Our model looks like the illness-death model of figure 1 but with “PCM”
as the upper state and no arrow for a return from that state to health. The necessary data set
will have two rows for any subject who has further follow-up after a PCM and a single row for
all others. The data set is created below using the tmerge function, which is discussed in detail
in another vignette.

We need to decide what to do with the 9 subjects who have PCM and death declared at the
same month. (Some of these were cancer cases discovered at autopsy.) They slipped through
without comment in the earlier competing risks analysis; only when setting up this second data
set did we notice the ties. Looking back at the code, the prior example counted these subjects
as a progression. In retrospect this is a defensible choice: even though undetected before death,
the disease must have been present for some amount of time previous and so progression did
occur first. For the multi-state model we need to be explicit in how this is coded since a sojourn
time of 0 within a state is not allowed. Below we push the progression time back by .1 month
when there is a tie, but that amount is entirely arbitrary.

> ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime))

> newdata <- tmerge(mgus2, mgus2, id=id, death=event(futime, death),

pcm = event(ptemp, pstat))

> newdata <- tmerge(newdata, newdata, id, enum=cumtdc(tstart))

> with(newdata, table(death, pcm))

pcm

death 0 1

0 421 115

1 963 0
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The table above shows that there are no observations in newdata that have both a PCM and
death, i.e., the ties have been resolved. The last tmerge line above creates a variable enum which
simply counts rows for each person; it will be used later.

> temp <- with(newdata, ifelse(death==1, 2, pcm))

> newdata$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death"))

> mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=newdata, id=id)

> print(mfit3, rmean=240, digits=2)

Call: survfit(formula = Surv(tstart, tstop, event) ~ sex, data = newdata,

id = id)

n nevent mean*

sex=F, pcm 690 59 3.2

sex=M, pcm 809 56 2.7

sex=F, death 690 423 118.6

sex=M, death 809 540 133.2

sex=F, 690 0 118.2

sex=M, 809 0 104.1

*mean time in state, restricted (max time = 240 )

> mfit3$transitions

to

from pcm death

pcm 0 103

death 0 0

115 860

> plot(mfit3[,1], mark.time=FALSE, col=1:2, lty=1:2, lwd=2,

xscale=12,

xlab="Years post MGUS diagnosis", ylab="Prevalence of PCM")

> legend(48, .04, c("female", "male"), lty=1:2, col=1:2, lwd=2, bty='n')

10



0 5 10 15 20 25 30 35

0.
00

0.
01

0.
02

0.
03

0.
04

Years post MGUS diagnosis

P
re

va
le

nc
e 

of
 P

C
M

female
male

This plot is quite different in that it shows the fraction of subjects currently in the PCM state.
Looking at our multi-state diagram this is the fraction of subjects in the upper right PCM box.
The curve goes up whenever someone enters the box (progression) and down when they leave
(death). Myeloma survival was quite short during the era of this study and the proportion
currently in the PCM state rarely rises above 2 percent.

The result of print(mfit3) reveals, as expected, less time spent in the PCM state. In the
prior mfit2 model, subjects who enter that state remain there for the duration; in this one they
quickly pass through. It is worthwhile to check the transitions table in the output simply as
a data check. In this case it shows subjects going from the entry (unnamed) state to PCM and
death along with transitions from PCM to death. This is as expected. An error in creating the
input data can lead to surprising counts and an even more surprising curve.

We have often found the three curve display below useful in the case of a transient state. It
combines the results from competing risk model used above along with a second fit that treats
death after PCM as a separate state from death before progression, the multi-state 2 model of
figure 2. In this plot the fraction of subjects currently in the PCM state is shown by the distance
between the two curves. Only males are shown in the plot to minimize overlap.

> # Death after PCM will correspond to data rows with

> # enum = 2 and event = death

> d2 <- with(newdata, ifelse(enum==2 & event=='death', 4, as.numeric(event)))

> e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm",

"death after pcm"))

> mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=newdata, id=id)
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> plot(mfit2[2,], lty=c(1,2),

xscale=12, mark.time=FALSE, lwd=2,

xlab="Years post diagnosis", ylab="Prevalence")

> lines(mfit4[2,3], mark.time=FALSE, col=2, lty=1, lwd=2,

conf.int=FALSE)

> legend(200, .5, c("Death w/o PCM", "ever PCM",

"Death after PCM"), col=c(1,1,2), lty=c(2,1,1),

lwd=2, bty='n', cex=.82)
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2.3 Further notes

The Aalen-Johansen method used by survfit does not account for interval censoring, also
known as panel data, where a subject’s current state is recorded at some fixed time such as
a medical center visit but the actual times of transitions are unknown. Such data requires
further assumptions about the transition process in order to model the outcomes and has a more
complex likelihood. The msm package, for instance, deals with data of this type. If subjects
reliably come in at regular intervals then the difference between the two results can be small,
e.g., the msm routine estimates time until progression occurred whereas survfit estimates time
until progression was observed.

� When using multi-state data to create Aalen-Johansen estimates, individuals are not al-
lowed to have gaps in the middle of their time line. An example of this would be a data

12



set with (0, 30, pcm] and (50,70, death] as the two observations for a subject where the
time from 30-70 is not accounted for.

� Subjects must stay in the same group over their entire observation time, i.e., variables on
the right hand side of the equation cannot be time-dependent.

� A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75, 89,
4], (89, 93, 4] and (93, 100, 4] for a subject who goes from entry to state 1, then to state 3,
and finally to state 4. However, a warning message is issued for the data set in this case,
since stuttering may instead be the result of a coding mistake. The same result is obtained
if the last three observations were collapsed to a single row of (75, 100, 4].

3 Rate models

For simple two-state survival, the Cox model leads to three relationships

λ(t) = λ0(t)eXβ (4)

Λ(t) = Λ0(t)eXβ (5)

S(t) = exp(−Λ(t)) (6)

where λ, Λ and S are the hazard, cumulative hazard and survival functions, respectively. There
is a single linear predictor which governs both the rate λ (the arrow in figure 1) and probability
of residing in the left hand box of the figure. For multi-state models this simplicity no longer
holds; proportional hazards does not lead to proportional p(t) curves. The task before us is more
complex.

The analysis of multi-state data has four key steps. In order of importance:

1. Draw a box and arrow figure describing the model.

2. Think through the rates (arrows).

(a) Which covariates should be attached to each rate? Sometimes a covariate is important
for one transition, but not for another.

(b) For which transitions should one or more of the covariates be constrained to have
the same coefficient? Sometimes there will be a biologic rationale for this. For other
studies an equivalence is forced simply because we have too many unknowns and
cannot accommodate them all. (This is the often the same reason that models contain
very few interaction terms).

(c) Which, if any, of the transitions should share the same baseline hazard? Most of the
time the baseline rates are all assumed to be different.

(d) Should there be random effects, and if so what is an appropriate correlation structure?
Do some pairs of transitions have a shared effect, some pairs separate effects and others
no random effect? Mixed effects Cox models tend to need larger sample size — does
the data set have enough events?

3. Build an appropriate data set.
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4. Fit the data. Examine multiple summaries of the model fit, including the predicted occu-
pancy curves.

Step 1 is key to the entire endeavor. We saw in figure 2 and the examples above that multiple
views of a multi-state process can be useful, and this will hold for modeling as well. Step 3 will
often be the one that demands the most attention to detail.

3.1 MGUS example

Start with the simplest model for the MGUS data: a competing risks model (upper left diagram of
figure 2), distinct baseline hazards for the two rates, no shared coefficients, and three covariates.

> options(show.signif.stars = FALSE) # display intelligence

> cfit2 <- coxph(Surv(etime, event=="death") ~ age + sex + mspike, mgus2)

> summary(cfit2, scale=c(10, 1, 1)) # scale age in decades

Call:

coxph(formula = Surv(etime, event == "death") ~ age + sex + mspike,

data = mgus2)

n= 1373, number of events= 854

(11 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

age 0.065200 1.067373 0.003649 17.869 < 2e-16

sexM 0.388899 1.475355 0.069928 5.561 2.68e-08

mspike -0.059260 0.942461 0.063869 -0.928 0.353

exp(coef) exp(-coef) lower .95 upper .95

age 1.9194 0.5210 1.7869 2.062

sexM 1.4754 0.6778 1.2864 1.692

mspike 0.9425 1.0611 0.8316 1.068

Concordance= 0.673 (se = 0.011 )

Rsquare= 0.247 (max possible= 1 )

Likelihood ratio test= 389.1 on 3 df, p=0

Wald test = 333.4 on 3 df, p=0

Score (logrank) test = 334.8 on 3 df, p=0

>

The effect of age and sex on non-PCM mortality is profound, which is not a surprise given the
median starting age of 72. Risk rises 1.9 fold per decade of age and the death rate for males is
1.5 times as great as that for females. The size of the serum monoclonal spike has almost no
impact on non-PCM mortality. A 1 unit increase changes mortality by only 6%.

> cfit1 <- coxph(Surv(etime, event=="pcm") ~ age + sex + mspike, mgus2)

> cfit1
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Call:

coxph(formula = Surv(etime, event == "pcm") ~ age + sex + mspike,

data = mgus2)

coef exp(coef) se(coef) z p

age 0.01635 1.01649 0.00837 1.95 0.051

sexM -0.00503 0.99498 0.18845 -0.03 0.979

mspike 0.88408 2.42075 0.16521 5.35 8.7e-08

Likelihood ratio test=30.3 on 3 df, p=1.22e-06

n= 1373, number of events= 115

(11 observations deleted due to missingness)

> quantile(mgus2$mspike, na.rm=TRUE)

0% 25% 50% 75% 100%

0.0 0.6 1.2 1.5 3.0

The mspike size has a major impact on progression, however; each 1 gram change increases
risk by 2.4 fold. The interquartile range of mspike is 0.9 gram so this risk increase is clinically
important. The effect of age on the progression rate is much less pronounced, with a coefficient
only 1/4 that for mortality, while the effect of sex on progression is completely negligible.

The effect of sex on the lifetime probability of PCM is not zero, however. Because of a longer
lifetime, a female with MGUS will on average spend more total years at risk for PCM than the
average male, and so has a larger lifetime risk of PCM. The average rate of progression is about
1% per year, as shown below, while the mean post diagnosis lifetime is 19 months longer for
females. The overall effect is a 1.6% increase in lifetime risk.

> pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mgus2, scale=12)

> round(100* pfit1$event/pfit1$pyears, 1) # PCM rate per year

sex

F M

1.1 1.0

> temp <- summary(mfit1, rmean="common") #print the mean survival time

> round(temp$table[,1:6], 1)

records n.max n.start events *rmean *se(rmean)

sex=F 631 631 631 423 142.4 6.1

sex=M 753 753 753 540 123.7 5.4

Notice that each coxph fit essentially ignores the other event type(s). In the figure, each rate
(arrow) depends only on the box from which it originates and the events which it enumerates.
Rates are instantaneous quantities, and depend only on the set of subjects who are at risk at at
a given moment; if someone is not at risk it really does not matter why.

When computing p(t), on the other hand, all the rates must be considered at once. The
Aalen-Johansen estimate applies as before, but now the individual entries λij(t) in each cell of
the transition matrix are taken from the relevant fit. As is also the case with predicted survival
curves from a simple Cox model, predicted prevalence curves correspond to a set of prespecified
covariate values. As an example we will generate the curves for four hypothetical subjects: male
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and female, age 60 and 80, and serum m-spike of 1.2 grams. These are the approximate quartiles
of age, and the median mspike.

The Aalen-Johansen estimate for this simple 3-state competing risks setup works with a
matrix of this form:  λ12t λ13(t)

0 0
0 0


As before, the diagonal elements are chosen so that each row sums to 1. Standard survival curve
calculations for a Cox model can be used to obtain λ12, the rate of transition to the PCM state
for our four subjects, and λ13 = the rate of transition to the “death before PCM” state. These
are placed into a matrix and combined using a third call.

> newdata <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2)

> newdata

sex age mspike

1 F 60 1.2

2 M 60 1.2

3 F 80 1.2

4 M 80 1.2

> temp <- matrix(list(), 3,3)

> dimnames(temp) <- list(from=c("Entry", "PCM", "Death"),

to =c("Entry", "PCM", "Death"))

> temp[1,2] <- list(survfit(cfit1, newdata, std.err=FALSE))

> temp[1,3] <- list(survfit(cfit2, newdata, std.err=FALSE))

> csurv <- survfit(temp, p0 =c(1,0,0))

> plot(csurv[,2], xmax=25*12, xscale=12,

xlab="Years after MGUS diagnosis", ylab="PCM",

col=1:2, lty=c(1,1,2,2), lwd=2)

> legend(10, .14, outer(c("female", "male "),

c("diagnosis at age 60", "diagnosis at age 80"),

paste, sep=", "),

col=1:2, lty=c(1,1,2,2), bty='n', lwd=2)
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The individual survival curves that result from survfit(cfit1) and survfit(cfit2) are not
actually of interest, since each is a Cox model analog of the pcmbad curve we criticized earlier.
The cumulative hazard portion of the results is what is used to build an Aalen-Johansen estimate.
(Calling survfit on a set of survfit objects is, I admit, a bit confusing. It would perhaps have
been better to name the second routine “AalenJohansen”, but we use this often and didn’t want
to type that long a name.)

Sex has nearly no effect on the hazard of PCM, i.e., on any given day the risk of conversion
for a male is essentially the same as for a female of the same age. Yet we see above that the
fitted Cox models predict a higher lifetime risk for females, and an age effect on lifetime risk
that is far from proportional. Very few subjects acquire PCM more than 15 years after a MGUS
diagnosis at age 80 for the obvious reason: very few of them will still be alive.

Creating the ‘list’ form matrix above is quite easy, in particular we do not need to fill in
elements on the diagonal, nor those for which no transitions occur, e.g., from death back to the
entry state. The resulting survfit object is easy to plot or print using standard calls. The
approach has a number of caveats, however.

� It does not produce standard errors for the curves, as a consequence of being two steps
removed from the data.

� It is easy to “fool” the program. For instance if you were to get curves for females and
males from cfit1, but the curves from cfit2 were in the reverse order of male then female,
results will still be produced but they would not be valid. The user is responsible for setting
the problem up correctly.
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� The R syntax for a matrix of lists is rather fussy, e.g., you can’t leave the list function
out of the lines that assign elements to temp above.

The mstate package addresses these issues, at the price of a somewhat more complex syntax.

> # Print out a M/F results at 20 years

> temp <- summary(csurv, time=20*12)$prev

> cbind(newdata, PCM= round(100*temp[,2], 1))

sex age mspike PCM

1 F 60 1.2 12.4

2 M 60 1.2 12.4

3 F 80 1.2 12.4

4 M 80 1.2 12.4

The above table shows that females are modeled to have a higher risk of 20 year progression,
even though their hazard at any given moment is nearly identical to males. The difference at
20 years is on the order of our “back of the napkin” person-years estimate of 1% progression per
year * 1.7 more years of life for the females, but the progression fraction varies substantially by
group.

4 Fine-Gray model

For the competing risk case the Fine-Gray model provides an alternate way of looking at the
data. As we saw above, the impact of a particular covariate on the final prevalence values P can
be complex, even if the models for the hazards are relatively simple. The primary idea of the
Fine-Gray approach is to turn the multi-state problem into a collection of two-state ones. In the
upper right diagram of figure 1, draw a circle around all of the states except the chosen endpoint
and collapse them into a single meta-state. For the MGUS data these are

� Model 1

– left box: All subjects in the entry or “death first” state

– right box: PCM

� Model 2

– left box: All subjects in the entry or “PCM first” state

– right box: Death (without PCM)

An interesting aspect of this is that the fit can be done as a two stage process: the first stage
creates a special data set while the second fits a weighted coxph or survfit model to the data.
The data set can be created using the finegray command.

> # (first three lines are identical to an earlier section)

> etime <- with(mgus2, ifelse(pstat==0, futime, ptime))

> event <- with(mgus2, ifelse(pstat==0, 2*death, 1))

> event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
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> pcmdat <- finegray(Surv(etime, event) ~ ., data=mgus2,

etype="pcm")

> pcmdat[1:4, c(1:3, 11:14)]

id age sex fgstart fgstop fgstatus fgwt

1 1 88 F 0 35 0 1.0000000

2 1 88 F 35 44 0 0.9990449

3 1 88 F 44 47 0 0.9980368

4 1 88 F 48 52 0 0.9959629

> deathdat <- finegray(Surv(etime, event) ~ ., data=mgus2,

etype="death")

> dim(pcmdat)

[1] 41775 14

> dim(deathdat)

[1] 12910 14

> dim(mgus2)

[1] 1384 10

The finegray command has been used to create two data sets: one for the PCM endpoint
and one for the death endpoint. In each, four new variables have been added containing a
survival time (fgstart, fgstop, fgstatus) with an ‘ordinary’ status of 0/1, along with a
case weight and a large number of new rows. We can use this new data set as yet another
way to compute multi-state survival curves, though there is no good reason to use this rather
roundabout approach instead of the simpler survfit(Surv(etime, event) ~sex).

> # The PCM curves of the multi-state model

> pfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex,

data=pcmdat, weight=fgwt)

> # The death curves of the multi-state model

> dfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex,

data=deathdat, weight=fgwt)

The two new curves are almost identical to the prior estimates, and in fact would be identical if
we had accounted for the slightly different censoring patterns in males and females (by adding
strata(sex) to the right hand side of the finegray formulas).

A Cox model fit to the constructed data set yields the Fine-Gray models for PCM and for
death.

> fgfit1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat,

weight= fgwt)

> summary(fgfit1)

Call:

coxph(formula = Surv(fgstart, fgstop, fgstatus) ~ sex, data = pcmdat,

weights = fgwt)

n= 41775, number of events= 115
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coef exp(coef) se(coef) z Pr(>|z|)

sexM -0.2290 0.7953 0.1866 -1.228 0.22

exp(coef) exp(-coef) lower .95 upper .95

sexM 0.7953 1.257 0.5517 1.146

Concordance= 0.528 (se = 0.024 )

Rsquare= 0 (max possible= 0.037 )

Likelihood ratio test= 1.51 on 1 df, p=0.2196

Wald test = 1.51 on 1 df, p=0.2196

Score (logrank) test = 1.51 on 1 df, p=0.2186

> fgfit2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat,

weight= fgwt)

> fgfit2

Call:

coxph(formula = Surv(fgstart, fgstop, fgstatus) ~ sex, data = deathdat,

weights = fgwt)

coef exp(coef) se(coef) z p

sexM 0.2335 1.2630 0.0689 3.39 0.00071

Likelihood ratio test=11.6 on 1 df, p=0.00067

n= 12910, number of events= 860

> mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) #reprise the AJ

> plot(mfit2[,1], col=1:2,

lwd=2, xscale=12,

conf.times=c(5, 15, 25)*12,

xlab="Years post diagnosis", ylab="Fraction with PCM")

> ndata <- data.frame(sex=c("F", "M"))

> fgsurv1 <- survfit(fgfit1, ndata)

> lines(fgsurv1, fun="event", lty=2, lwd=2, col=1:2)

> legend("topleft", c("Female, Aalen-Johansen", "Male, Aalen-Johansen",

"Female, Fine-Gray", "Male, Fine-Gray"),

col=1:2, lty=c(1,1,2,2), bty='n')

> # rate models with only sex

> pfitr <- coxph(Surv(etime, event=="pcm") ~ sex, mgus2)

> dfitr <- coxph(Surv(etime, event=="death") ~ sex, mgus2)

> temp <- matrix(list(), 3,3)

> temp[1,2] <- list(survfit(pfitr, ndata, std.err=FALSE))

> temp[1,3] <- list(survfit(dfitr, ndata, std.err=FALSE))

> rcurve <- survfit(temp, p0=c(entry=1, pcm=0, death=0))
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The FG model states that males have a lower rate of observed PCM, by a factor of 0.8, and that
this hazard ratio is constant over time. An overlaid plot of the non-parametric Aalen-Johansen
estimates for the PCM state (from survfit) along with predicted curves from the Fine-Gray
model show that proportional hazards is not unreasonable for this particular fit. The predicted
values from the rate model, computed just above but not plotted on the curve, also fit well with
the data.

When there is only a single categorical 0/1 covariate the Fine-Gray model reduces to Gray’s
test of the subdistribution function, in the same way that a coxph fit with a single categorical
predictor is equivalent to the log-rank test.

The mathematics behind the Fine-Gray estimate starts with the functions Fk(t) = pk(t),
where p is the probability in state function estimated by the AJ estimate. This can be thought
of as the distribution function for the improper random variable T ∗ = I(event type = k)T +
I(event type 6= k)∞. Fine and Gray refer to Fk as a subdistribution function. In analogy to the
survival probability in the two state model define

γk(t) = −d log[1− Fk(t)]/dtI (7)

and assume that γk(t;x) = γk0(t) exp(Xβ). In a 2 state alive −→ death model, γ becomes the
usual hazard function λ. In the same way that our multivariate Cox model cfit2 made the
simplifying assumption that the impact of male sex is to increase the hazard for death by a
factor of 1.48, independent of the subject’s age or serum mspike value, the Fine-Gray model
assumes that each covariate’s effect on log(1− F ) is a constant, independent of other variables.
Both model’s assumptions are wonderfully simplifying with respect to understanding a covariate,
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since we can think about each one separately from the others. This is, of course, under the
assumption that the model is correct: additivity across covariates, linearity, and proportional
hazards all hold. In a multi-state model, however, these assumptions cannot hold for both the
per-transition and Fine-Gray models formulations at the same time; if it is true for one, it will
not be true for the other.

Now consider a multivariate fit on age, sex, and serum m-spike.

> fgfit2a <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike,

data=pcmdat, weight=fgwt)

> fgfit2b <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike,

data=deathdat, weight=fgwt)

> round(rbind(PCM= coef(fgfit2a), death=coef(fgfit2b)), 3)

age sexM mspike

PCM -0.017 -0.213 0.888

death 0.059 0.369 -0.154

The Fine-Gray fits show an effect of all three variables on the subdistribution rates. Males have
a lower lifetime risk of PCM before death and a higher risk of death before PCM, while a high
serum m-spike works in the opposite direction. The Cox models showed no effect of sex on the
instantaneous hazard of PCM and none for serum m-spike on the death rate. However, as shown
in the last section, the Cox models do predict a greater lifetime risk for females. We had also
seen that older subjects are less likely to experience PCM due to the competing risk of death;
this is reflected in the FG model as a negative coefficient for age.

Now compute predicted survival curves for the model, and show them alongside the predic-
tions from the multi-state model.

> oldpar <- par(mfrow=c(1,2))

> newdata <- expand.grid(sex= c("F", "M"), age=c(60, 80), mspike=1.2)

> fsurv1 <- survfit(fgfit2a, newdata) # time to progression curves

> plot(fsurv1, xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, fun='event',

xlab="Years", ylab="Fine-Gray predicted",

xmax=12*25, ylim=c(0, .15))

> legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')

> plot(csurv[,2], xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2,

xlab="Years", ylab="Multi-state predicted",

xmax=12*25, ylim=c(0, .15))

> legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')

> par(oldpar)
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The predictions as a function of age group are quite different for the Fine-Gray model: new
PCM cases are predicted 20+ years after diagnosis in both the old and young age groups, while
they are predicted to cease in the multi-state fit. The average of the curves is nearly the same
at each age, but the global proportional hazards assumption of the FG model forces the curves
to remain parallel.

We can check the proportional hazards assumption of the models using the cox.zph function,
linearity of the continuous variables age and mspike by using non-linear terms such as pspline

or ns, and additivity by exploring interactions. All are obvious and important next steps. For
instance, the proportional hazards assumption for age shows clear violations.

> zph.fgfit2a <- cox.zph(fgfit2a)

> zph.fgfit2a

rho chisq p

age -0.5306 20.9939 4.61e-06

sexM 0.0215 0.0528 8.18e-01

mspike -0.0267 0.0788 7.79e-01

GLOBAL NA 21.3108 9.07e-05

> plot(zph.fgfit2a[1])

> abline(h=coef(fgfit2a)[1], lty=2, col=2)
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A weakness of the Fine-Gray approach is that since the two endpoints are modeled separately,
the results do not have to be consistent. Below is a graph of the predicted fraction who have
experienced neither endpoint. For subjects diagnosed at age 80 the Fine-Gray models predict
that more than 100% will either progress or die by 30 years. Predictions based on the Aalen-
Johansen approach do not have this issue.

> fsurv2 <- survfit(fgfit2b, newdata) # time to progression curves

> xtime <- 0:(30*12) #30 years

> y1a <- 1 - summary(fsurv1, times=xtime)$surv #predicted pcm

> y1b <- 1 - summary(fsurv2, times=xtime)$surv #predicted deaths before pcm

> y1 <- (y1a + y1b) #either

> matplot(xtime/12, y1, col=1:2, lty=c(1,1,2,2), type='l',

xlab="Years post diagnosis", ylab="FG: either endpoint")

> abline(h=1, col=3)

> legend("bottomright", c("Female, 60", "Male, 60","Female: 80", "Male, 80"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')
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The primary strength of the Fine-Gray model with respect to the Cox model approach is
that if lifetime risk is a primary question, then the model has given us a simple and digestible
answer to that question: “females have a 1.2 fold higher chance of PCM, after adjustment for
age and serum m-spike”. This simplicity is not without a price, however, and these authors are
not proponents of the approach. There are five issues.

1. The attempt to capture a complex process as a single value is grasping for a simplicity
that does not exist for many (perhaps most) data sets. The necessary assumptions in a
multivariate Cox model of proportional hazards, linearity of continuous variables, and no
interactions are strong ones. For the FG model these need to hold for a combined process
— the mixture of transition rates to each endpoint — which turns out to be a more difficult
barrier.

2. The sum of predictions need not be consistent.

3. From the per-transition models one can work forward and compute p(t), the occupancy
probabilities for each state over time; both the hazard ratios and p are useful summaries of
the data. We don’t have tools to work backwards from a Fine-Gray fit to the per transition
hazards.

4. The approach is viable only for competing risks and not for other multi-state models.

5. The risk sets are odd.
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The last of these is perhaps the most frequently listed issue with the Fine-Gray model, but it
is actually a minor complaint. The state probabilities p(t) in a multi-state model are implicitly
fractions of the total population we started with: someone who dies in month 1 is still a part of
the denominator for the fraction of subjects with PCM at 20 years. In the Fine-Gray formulas
this subject explicitly appears in risk set denominators at a later time, which looks odd but is
more of an artifact.

The first issue is substantial, however, and checking the model assumptions of a Fine-Gray
fit is mandatory. The second point is alarming, but it does not have a practical impact unless
there is long follow-up.

5 Stacked data sets

How does one fit risk models that have shared coefficients or baseline hazards? One approach is
to fit the set of Cox models for the rates ‘all at once’ on a combined data set. For the simple
competing risks MGUS fit above, assume that we wanted to add hemoglobin to the fit, with a
common coefficient for both the PCM and death endpoint. (Anemia is a feature of both PCM
and old age.) Create a stacked data set with 2n observations. The first n rows are the data set
we would use for a time to PCM analysis, with a simple 0/1 status variable encoding the PCM
outcome. The second n rows are the data set we would have used for the ‘death before PCM’
fits, with status encoding the death-before-PCM endpoint. A last variable, group, is ’pcm’ for
the first n observations and ’death’ for the remainder. Then fit a model

> temp1 <- data.frame(mgus2, time=etime, status=(event=="pcm"), group='pcm')

> temp2 <- data.frame(mgus2, time=etime, status=(event=="death"), group="death")

> stacked <- rbind(temp1, temp2)

> allfit <- coxph(Surv(time, status) ~ hgb + (age + sex)*strata(group),

data=stacked)

This fits a common effect for hemoglobin (hgb) but separate age and sex effects for the two
endpoints, along with separate baseline hazards.

6 Other software

6.1 The mstate package

As the number of states + transitions (arrows + boxes) gets larger then the ‘by hand’ approach
used above for creating a stacked data set, labeling coefficients, and producing multi-state curves
becomes a challenge. (It is still fairly easy to do, just not as easy to ensure it has been done
correctly.) The mstate package starts with a definition of the matrix of possible transitions
and uses that to drive tools that build and analyze the stacked data set in a more automated
fashion. We recommend it for more complex models. (The tutorial above is about at our
personal threshold.) A second advantage of mstate is that all the Cox model fits are now in
one well indexed object, which allows for calculation of proper confidence intervals for the state
probabilities p(t). (Since all of the steps used the same transition matrix template, the necessary
computations are scripted and reliable.)
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6.2 The msm package

There are two broad classes of multi-state data:

� Panel data arises when subjects have regular visits, with the current state assessed at each
visit. We don’t know when the transitions between states occur, or if other states may
have been visited in the interim — only the subject’s state at specific times.

� Survival data arises when we observe the transition times; death, for example.

The overall model (boxes and arrows), the quantities of interest (transition rates and p(t)),
and the desired printout and graphs are identical for the two cases. Much of the work in creating
a data set is also nearly the same. The underlying likelihood equations and resulting analytical
methods for solving the problem are, however, completely different. The msm package addresses
panel data, while survival, mstate, and a host of others are devoted to survival data.

7 Conclusions

When working with acute diseases, such as advanced cancer or end-stage liver disease, there is
often a single dominating endpoint. Ordinary single event Kaplan-Meier curves and Cox models
are then efficient and sufficient tools for much of the analysis. Such data was the primary use
case for survival analysis earlier in the authors’ careers. Data with multiple important endpoints
is now common, and multi-state methods are an important addition to the statistical toolbox.
As shown above, they are now readily available and easy to use.

It is sometimes assumed that the presence of competing risks requires the use of a Fine-Gray
model (we have seen it in referee reports), but this is not correct. The model may often be useful,
but is one available option among many. Grasping the big picture for a multi-state data set is
always a challenge and we should make use of as many tools as possible. We are often reminded
of the story of a centenarian on his 100th birthday proclaiming that he was looking forward
to many more years ahead because “I read the obituaries every day, and you almost never see
someone over 100 listed there”. It is not always easy to jump between observed deaths, hazard
rates, and lifetime risk.
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