
ODBC Connectivity

by Brian Ripley
Department of Statistics, University of Oxford

ripley@stats.ox.ac.uk

September 25, 2016

Package RODBC implements ODBC database connectivity. It was originally written by
Michael Lapsley (St George’s Medical School, University of London) in the early days of R
(1999), but after he disappeared in 2002, it was rescued and since much extended by Brian
Ripley. Version 1.0-1 was released in January 2003, and RODBC is nowadays a mature
and much-used platform for interfacing R to database systems.

Thanks to Marc Schwartz for contributing some of the experiences here. See also the
archives of the R-sig-db mailing list.

1 ODBC Concepts

ODBC aims to provide a common API for access to SQL1-based database management
systems (DBMSs) such as MySQL2, PostgreSQL, Microsoft Access and SQL Server, DB2,
Oracle and SQLite. It originated on Windows in the early 1990s, but ODBC driver man-
agers unixODBC and iODBC are nowadays available on a wide range of platforms (and iODBC

is used by macOS (aka OS X). The connection to the particular DBMS needs an ODBC
driver : these may come with the DBMS or the ODBC driver manager or be provided
separately by the DBMS developers, and there are third-party3 developers such as Actual
Technologies, Easysoft and OpenLink. (This means that for some DBMSs there are several
different ODBC drivers available, and they can behave differently.)

Microsoft provides drivers on Windows for non-SQL database systems such as DBase and
FoxPro, and even for flat files and Excel spreadsheets. Actual Technologies sell a driver
for macOS that covers (some) Excel spreadsheets and flat files.

A connection to a specific database is called a Data Source Name or DSN (see https:

//en.wikipedia.org/wiki/Database_Source_Name). See Appendix B for how to set up
DSNs on your system. One of the greatest advantages of ODBC is that it is a cross-
platform client-server design, so it is common to run R on a personal computer and access

1SQL is a language for querying and managing data in databases—see https://en.wikipedia.org/

wiki/SQL.
2and its fork, MariaDB
3but there are close links between unixODBC and Easysoft, and iODBC and OpenLink.

1

ripley@stats.ox.ac.uk
https://en.wikipedia.org/wiki/Database_Source_Name
https://en.wikipedia.org/wiki/Database_Source_Name
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

data on a remote server whose OS may not even be known to the end user. This does
rely on suitable ODBC drivers being available on the client: they are for the major cross-
platform DBMSs, and some vendors provide ‘bridge’ drivers, so that for example a ‘bridge’
ODBC driver is run on a Linux client and talks to the Access ODBC driver on a remote
Windows machine.

ODBC provides an abstraction that papers over many of the differences between DBMSs.
That abstraction has developed over the years, and RODBC works with ODBC version 3.
This number describes both the API (most drivers nowadays work with API 3.51 or 3.52)
and capabilities. The latter allow ODBC drivers to implement newer features partially or
not at all, so some drivers are much more capable than others: in the main RODBC works
with basic features. ODBC is a superset of the ISO/IEC 9075-3:1995 SQL/CLI standard.

A somewhat biased overview of ODBC on Unix-alikes can be found at https://www.

easysoft.com/developer/interfaces/odbc/linux.html.

2 Basic Usage

Two groups of functions are provided in RODBC. The mainly internal odbc* commands
implement low-level access to C-level ODBC functions with similar4 names. The sql*

functions operate at a higher level to read, save, copy and manipulate data between data
frames and SQL tables. The two low-level functions which are commonly used make or
break a connection.

2.1 Making a connection

ODBC works by setting up a connection or channel from the client (here RODBC) to the
DBMSs as specified in the DSN. Such connections are normally used throughout a session,
but should be closed explicitly at the end of the session—however RODBC will clear up
after you if you forget (with a warning that might not be seen in a GUI environment).
There can be many simultaneous connections.

The simplest way to make a connection is

library(RODBC)

ch <- odbcConnect("some dsn")

and when you are done with it,

close(ch)

or if you prefer

odbcClose(ch)

The connection object ch is how you specify one of potentially many open connections,
and is the first argument to all other RODBC functions. If you forget the details, printing
it will give some summary information.

4in most cases with prefix SQL replacing odbc.

2

https://www.easysoft.com/developer/interfaces/odbc/linux.html
https://www.easysoft.com/developer/interfaces/odbc/linux.html

If the DBMS user and password are needed and not stored in the DSN, they can be supplied
by e.g.

ch <- odbcConnect("some dsn", uid = "user", pwd = "****")

Users of the R GUI under Windows5 have another possibility: if an incompletely specified
DSN is given, the driver-specific Data Source dialog box will pop up to allow it to be
completed.

More flexibility is available via function odbcDriverConnect, which works with a connec-
tion string. At its simplest it is

"DSN=dsn;UID=uid;PWD=pwd"

but it can be constructed without a DSN by specifying a driver directly via DRIVER=,
and more (in some cases many more) driver-specific parameters can be given. See the
documentation for the driver (and Appendix A) for more details.

2.2 Reading from a database

where ‘database’ can be interpreted very widely, including for example Excel spreadsheets
and directories of flat files.

The simplest and most common use of RODBC is to extract data from databases held on
central database servers. Such access is read-only, and this can be enforced by settings in
the DSN or via permission settings (also known as privileges) on the database.

To find out what tables are accessible from a connection ch, use

sqlTables(ch)

Some drivers will return all visible table-like objects, not just those owned by you. In that
case you may want to restrict the scope by e.g.

sqlTables(ch, tableType = "TABLE")

sqlTables(ch, schema = "some pattern")
sqlTables(ch, tableName = "some pattern")

The details are driver-specific but in most cases some pattern can use wildcards6 with
underscore matching a single character and percent matching zero or more characters.
Since underscore is a valid character in a table name it can be handled literally by preceding
it by a backslash—but it is rarely necessary to do so.

A table can be retrieved as a data frame by

res <- sqlFetch(ch, "table name")

If it has many rows it can be retrieved in sections by

res <- sqlFetch(ch, "table name", max = m)

res <- sqlFetchMore(ch, "table name", max = m)

...

5This does not work from Rterm.exe.
6these are the SQL wildcards used for example in LIKE clauses.

3

It is often necessary to reduce the data to be transferred: we have seen how to subset rows,
but it can be more effective to restrict the columns or to return only rows meeting some
conditions. To find out what columns are available, use sqlColumns, for example

> sqlColumns(ch, "USArrests")

TABLE CAT TABLE SCHEM TABLE NAME COLUMN NAME DATA TYPE TYPE NAME COLUMN SIZE

1 ripley <NA> USArrests State 12 varchar 255

2 ripley <NA> USArrests Murder 8 double 15

3 ripley <NA> USArrests Assault 4 integer 10

4 ripley <NA> USArrests UrbanPop 4 integer 10

5 ripley <NA> USArrests Rape 8 double 15

...

Then an SQL Query can be used to return part of the table, for example (MySQL on
Linux)

> sqlQuery(sh, paste("SELECT State, Murder FROM USArrests",

+ "WHERE Rape > 30 ORDER BY Murder"))

State Murder

1 Colorado 7.9

2 Arizona 8.1

3 California 9.0

4 Alaska 10.0

5 New Mexico 11.4

6 Michigan 12.1

7 Nevada 12.2

8 Florida 15.4

Note that although there are standards for SQL, all the major producers of DBMSs have
their own dialects, so for example on the Oracle and DB2 systems we tested this query
had to be given as

> sqlQuery(ch, paste('SELECT "State", "Murder" FROM "USArrests"',
+ 'WHERE "Rape" > 30 ORDER BY "Murder"'))

or even in upper case. Describing how to extract data from databases is the forte of the
SQL language, and doing so efficiently is the aim of many of the DBMSs, so this is a very
powerful tool. To learn SQL it is best to find a tutorial specific to the dialect you will
use; for example Chapter 3 of the MySQL manual is a tutorial. A basic tutorial which
covers some common dialects7 can be found at http://www.1keydata.com/sql/sql.html:
tutorials on how to perform common tasks in several commonly used DBMSs are available
at http://sqlzoo.net/.

2.3 Table Names

SQL-92 expects both table and column names to be alphanumeric plus underscore, and
RODBC does not in general support vendor extensions (for example Access allows spaces).
There are some system-specific quoting schemes: Access and Excel allow table names to
be enclosed in [] in SQL queries, MySQL (by default) quotes via backticks, and most
other systems use the ANSI SQL standard of double quotes.

7MySQL, Oracle and Microsoft SQL Server.

4

http://www.1keydata.com/sql/sql.html
http://sqlzoo.net/

The odbcConnnect function allows the specification of the quoting rules for names RODBC
itself sends, but sensible defaults8 are selected. Users do need to be aware of the quoting
issue when writing queries for sqlQuery themselves.

Note the underscore is a wildcard character in table names for some of the functions, and
so may need to be escaped (by backslash) at times.

Normally table names containing a period are interpreted as references to another
schema (see below): this can be suppressed by opening the connection with argument
interpretDot = FALSE.

2.4 Types of table

The details are somewhat DBMS-specific, but ‘tables’ usually means ‘tables, views or
similar objects’.

In some systems ‘tables’ are physical objects (files) that actually store data—Mimer calls
these base tables. For these other ‘tables’ can be derived that present information to the
user, usually called ‘views’. The principal distinctions between a (base) table and a view
are

• Using DROP on a table removes the data, whereas using it on a view merely removes
the convenient access to a representation of the data.

• The access permission (privilege) of a view can be very different from those of a
table: this is commonly used to hide sensitive information.

A view can contain a subset of the information available in a single table or combine
information from two or more tables.

Further, some DBMSs distinguish between tables and views generated by ordinary users
and system tables used by the DBMS itself. Where present, this distinction is reflected in
the result of sqlTable() calls.

Some DBMSs support synonyms and/or aliases which are simply alternative names for an
existing table/view/synonym, often those in other schemas (see below).

Typically tables, views, synonyms and aliases share a name space and so must have a name
that is unique (in the enclosing schema where schemas are implemented).

3 Writing to a Database

To create or update a table in a database some more details need to be considered. For
some systems, all table and column names need to be lower case (e.g. PostgreSQL, MySQL
on Windows) or upper case (e.g. some versions of Oracle). To make this a little easier, the

8backticks for MySQL, [] for the Access and Excel convenience wrappers, otherwise ANSI double
quotes.

5

odbcConnect function allows a remapping of table names to be specified, and this happens
by default for DBMSs where remapping is known to be needed.

The main tool to create a table is sqlSave. It is safest to use this after having removed
any existing table of the same name, which can be done by

sqlDrop(ch, "table name", errors = FALSE)

Then in the simplest usage

sqlSave(ch, some data frame)

creates a new table whose name is the name of the data frame (remapped to upper or lower
case as needed) and with first column rownames the row names of the data frame, and
remaining columns the columns of the data frame (with names remapped as necessary).
For the many options, see the help page.

sqlSave works well when asked to write integer, numeric and reasonable-length9 character
strings to the database. It needs some help with other types of columns in mapping to
the DBMS-specific types of column. For some drivers it can do a good job with date and
date-time columns; in others it needs some hints (and e.g. for Oracle dates are stored as
date-times). The files in the RODBC/tests directory in the sources and the installed file
tests.R provide some examples. One of the options is the fast argument: the default
is fast = TRUE which transfers data in binary format: the alternative is fast = FALSE

which transfer data as character strings a row at a time—this is slower but can work better
with some drivers (and worse with others).

The other main tool for writing is sqlUpdate which is used to change rows in an existing
table. Note that RODBC only does this in a simple fashion, and on up-market DBMSs it
may be better to set cursors and use direct SQL queries, or at least to control transactions
by calls to odbcSetAutoCommit and odbcEndTran. The basic operation of sqlUpdate is
to take a data frame with the same column names (up to remapping) as some or all of the
columns of an existing table: the values in the data frame are then used either to replace
entries or to create new rows in the table.

Rows in a DBMS table are in principle unordered and so cannot be referred to by number:
the sometimes tricky question is to know what rows are to replaced. We can help the
process by giving one or more index columns whose values must match: for a data frame
the row names are often a good choice. If no index argument is supplied, a suitable set of
columns is chosen based on the properties of the table.

3.1 Primary keys and indices

When a table is created (or afterwards) it can be given additional information to enable
it to be used effectively or efficiently.

9which of course depends on the DBMS. Almost all have an implementation of varchar that allows up
to 255 bytes or characters, and some have much larger limits. Calling sqlTypeInfo will tell you about the
data type limits.

6

Primary keys are one (usually) or more columns that provide a reliable way to reference
rows in the table: values of the primary key must be unique and not NULL (SQL parlance
for ‘missing’). Primary keys in one table are also used as foreign keys in another table:
this ensure that e.g. values of customer id only take values which are included in the
primary key column of that name in table customers. Support of foreign keys is patchy:
some DBMSs (e.g, MySQL prior to 6.0) accept specifications but ignore them.

RODBC allows primary keys to be set as part of the sqlSave() function when it creates
a table: otherwise they can be set by sqlQuery() in DBMS-specific ways (usually by
ALTER TABLE).

Columns in a table can be declared as UNIQUE: primary keys and such columns are usually
used as the basis for table indices, but other indices (sometimes called secondary indices)
can be declared by a CREATE INDEX SQL command. Whether adding primary keys or
other indices has any effect on performance depends on the DBMS and the query.

4 Data types

This can be confusing: R has data types (including character, double, integer and
various classes including Date and POSIXct), ODBC has both C and SQL data types, the
SQL standards have data types and so do the various DBMSs and they all have different
names and different usages of the same names.

Double- and single-precision numeric values and 32- and 16-bit integers (only) are trans-
ferred as binary values, and all other types as character strings. However, unless
as.is = TRUE, sqlGetResults (used by all the higher-level functions to return a data
frame) converts character data to a date/date-time class or via type.convert.

You can find out the DBMS names for the data types used in the columns of a table
by a call to sqlColumns, and further information is given on those types in the result of
sqlTypeInfo. For example in MySQL,

TABLE_CAT TABLE_SCHEM TABLE_NAME COLUMN_NAME DATA_TYPE TYPE_NAME COLUMN_SIZE

1 ripley <NA> USArrests State 12 varchar 255

2 ripley <NA> USArrests Murder 8 double 15

3 ripley <NA> USArrests Assault 4 integer 10

4 ripley <NA> USArrests UrbanPop 4 integer 10

5 ripley <NA> USArrests Rape 8 double 15

BUFFER_LENGTH DECIMAL_DIGITS NUM_PREC_RADIX NULLABLE REMARKS COLUMN_DEF

1 255 NA NA 0 ''
2 8 NA NA 1 <NA>

3 4 0 10 1 <NA>

4 4 0 10 1 <NA>

5 8 NA NA 1 <NA>

SQL_DATA_TYPE SQL_DATETIME_SUB CHAR_OCTET_LENGTH ORDINAL_POSITION IS_NULLABLE

1 12 NA 255 1 NO

2 8 NA NA 2 YES

3 4 NA NA 3 YES

4 4 NA NA 4 YES

5 8 NA NA 5 YES

This gives the DBMS data by name and by number (twice, once the number used in the
DBMS and once that used by SQL—they agree here). Other things of interest here are

7

the column size, which gives the maximum size of the character representation, and the
two columns about ‘nullable’ which indicate if the column is allowed to contain missing
values (SQL NULLs).

The result of sqlTypeInfo has 19 columns and in the version of MySQL used here, 52
types. We show a small subset of the more common types:

> sqlTypeInfo(channel)[<...>, c(1:3,7,16)]

TYPE_NAME DATA_TYPE COLUMN_SIZE NULLABLE SQL_DATATYPE

1 bit -7 1 1 -7

2 tinyint -6 3 1 -6

6 bigint -5 19 1 -5

18 text -1 65535 1 -1

19 mediumtext -1 16777215 1 -1

20 longtext -1 2147483647 1 -1

22 char 1 255 1 1

23 numeric 2 19 1 2

24 decimal 3 19 1 3

25 integer 4 10 1 4

37 smallint 5 5 1 5

41 double 6 15 1 6

43 float 7 7 1 7

45 double 8 15 1 8

47 date 91 10 1 9

48 time 92 8 1 9

49 year 5 4 1 5

50 datetime 93 21 1 9

51 timestamp 93 14 0 9

52 varchar 12 255 1 12

Note that there are both duplicate type names and duplicate type numbers.

Most DBMSs started with their own data types and later mapped the standard SQL data
types on to them, although these may only be partially implemented. Some DBMSs allow
user-defined data types, for example enumerations.

Commonly used data types fall into a number of groups:

Character types Character types can be classified three ways: fixed or variable length,
by the maximum size and by the character set used. The most commonly used
types10 are varchar for short strings of variable length (up to some maximum) and
char for short strings of fixed length (usually right-padded with spaces). The value
of ‘short’ differs by DBMS and is at least 254, often a few thousand—often other
types will be available for longer character strings. There is a sanity check which
will allow only strings of up to 65535 bytes when reading: this can be removed by
recompiling RODBC.

Many other DBMSs have separate types to hold Unicode character strings, often
with names like nvarchar or wvarchar. Note that currently RODBC only uses the
current locale for character data, which could be UTF-8 (and will be on macOS
and in many cases on Linux and other Unix-alikes), but is never UCS-2 as used
on Windows. So if character data is stored in the database in Unicode, it will be
translated (with a possible loss of information) in non-Unicode locales. (This may
change in future versions of RODBC.)

10the SQL names for these are CHARACTER VARYING and CHARACTER, but these are too cumbersome for
routine use.

8

Some DBMSs such as PostgreSQL and Microsoft SQL Server allow variable-length
character strings of length only limited by resources. These do not fit well with the
ODBC model that requires buffers to be allocated to transfer character data, and so
such types may be subjected (by the ODBC driver) to a fixed limit or not work at
all.

Integer types Most DBMSs have types for 32-bit (integer, synomyn int) and 16-bit
(smallint) integers. Some, including MySQL, also have unsigned versions and 1-bit,
8-bit and 64-bit integer types: these further types would usually be transferred as
character strings and converted on reading to an integer or double vector.

Type names int2, int4 and int8 are common as synonyms for the basic type names.

The SQL standard does not require integer and smallint to be binary (rather than
decimal) types, but they almost always are binary.

Note that 64-bit integers will be transferred as character strings and read by
sqlGetResults as character vectors or (for 231 ≤ |x| < 253) as double vectors.

Floating-point types The basic SQL floating-point types are 8 and 7 for double- and
single-precision binary types. The SQL names are double precision and real,
but beware of the variety of names. Type 6 is float in the standard, but is used
by some DBMSs11 for single-precision and by some for double-precision: the forms
float(24) and float(53) are also commonly supported.

You should not assume that these types can store Inf, -Inf or NaN, but they often
can.

Other numeric types It is common to store decimal quantities in databases (e.g. cur-
rency amounts) and types 2 and 3 are for decimals. Some DBMSs have specialized
types to handle currencies, e.g. money in Microsoft SQL Server.

Decimal types have a precision (the maximum number of significant decimal digits)
and scale (the position of the decimal point). numeric and decimal are usually
synonymous, but the distinction in the standards is that for numeric the precision
is exact whereas for decimal the DBMS can use a larger value than that specified.

Some DBMSs have a type integer(p) to represent up to p decimal digits, and this
may or may not be distinct from decimal(p, 0).

DBMSs do not necessarily fully implement decimal types, e.g. MySQL currently
stores them in binary and used to store them as character strings.

Dates and times The handling of dates and times is very much specific to the DBMS.
Some allow fractional seconds in date-times, and some do not; some store timezones
with date-times or always use UTC and some do not, and so on. Usually there are
also types for time intervals.

All such types are transferred as character strings in RODBC.

11In Oracle the FLOAT type is a decimal and not a binary type.

9

Binary types These are less common, and unsupported by RODBC prior to version
1.3-0. They parallel character types in that they are a sequence of bytes of fixed
or variable length, sometimes with additional types for long sequences: there are
separate ODBC types for SQL BINARY, SQL VARBINARY and SQL LONGVARBINARY.

Binary types can currently only be read as such, and they are returned as column of
class "ODBC binary" which is a list of raw vectors.

It is possible (but rare) for the DBMS to support data types that the ODBC driver cannot
handle.

4.1 Data types when saving a data frame

When sqlSave creates a table, there is some choice as to the SQL data types used.

The default is to select the SQL data type from the R type via the typeInfo argu-
ment to sqlSave. If this is not supplied (usual) a default mapping is looked up using
getSqlTypeInfo() or by interrogating sqlTypeInfo(). This will almost always produce
the correct mapping for numeric, integer and character columns of up to 254 characters (or
bytes). In other cases (include dates and date-times) the desired SQL type can be spec-
ified for each column via the argument varTypes, a named character vector with names
corresponding to (some of) the names in the data frame to be saved.

Only a very few DBMSs have a logical data type and the default mapping is to store
R logical vectors as varchar(5). For others DBMSs BIT, TINYINT or an enumeration
type could be used (but the column may be need to be converted to and from a suitable
representation). For example, in MySQL we could use enum('FALSE', 'TRUE'), but this
is actually stored as char(5). Note that to represent NA the SQL data type chosen needs
to be nullable, which BIT often is not. (Mimer has a nullable data type BOOLEAN but this
is not supported by the ODBC client.)

4.2 SQLite

SQLite’s concept of ‘data type’ is anomalous: version 3 does recognize types of data (in
version 2 everything was a character string), but it does not have a fixed type for a column
in a table (although the type specified in the CREATE TABLE statement is a ‘recommended’
type for the values of that column). Every value is categorized as null, integer (of length 1,
2, 3, 4, 6 or 8 bytes), double, text (UTF-8 or UTF-16) or BLOB (a sequence of bytes). This
does not fit well with the ODBC interface which pre-determines a type for each column
before reading or writing it: the ‘SQLite ODBC’ driver falls back to a SQL VARCHAR or
SQL LONGVARCHAR type if the column type is not available.

4.3 ODBC data types

ODBC defines two sets of data types: SQL data types and C data types. SQL data types
indicate the data types of data stored at the data source using standard names. C data

10

SQL CHAR 1 SQL LONGVARCHAR -1

SQL NUMERIC 2 SQL BINARY -2

SQL DECIMAL 3 SQL VARBINARY -3

SQL INTEGER 4 SQL LONGVARBINARY -4

SQL SMALLINT 5 SQL BIGINT -5

SQL FLOAT 6 SQL TINYINT -6

SQL REAL 7 SQL BIT -7

SQL DOUBLE 8 SQL WCHAR -8

SQL DATETIME 9 SQL WVARCHAR -9

SQL INTERVAL 10 SQL WLONGVARCHAR -10

SQL TIMESTAMP 11 SQL GUID -11

SQL VARCHAR 12

SQL TYPE DATE 91

SQL TYPE TIME 92

SQL TYPE TIMESTAMP 93

Table 1: Mapping between ODBC SQL data type names and numbers. (GUIDs are 16-byte
numbers, Microsoft’s implementation of UUIDs.)

types indicate the data types used in the compiled code in the application (here RODBC)
when transferring data and are the same for all drivers.

The ODBC SQL data types are abstractions of the data types discussed above with
names like SQL INTEGER. They include SQL LONGVARCHAR for large character types and
SQL WVARCHAR for Unicode character types. It is usually these types that are returned
(by number) in the SQL DATA TYPE column of the result of sqlColumns and SQL DATATYPE

column of the result of sqlTypeInfo. The mapping from names to numbers is given in
table 1.

The only ODBC C data types currently used by RODBC are SQL C DOUBLE, SQL C SLONG

(32-bit signed integers) and SQL C CHAR for reading and writing, and SQL C FLOAT (single-
precision), SQL C SSHORT (16-bit signed integers) and SQL C BINARY for reading from the
database.

https://msdn.microsoft.com/en-us/library/ms713607%28VS.85%29.aspx is the
defintiive source of information about ODBC data types.

5 Schemas and Catalogs

This is a more technical section: few users will need to deal with these concepts.

‘Schemas’12 are collections of objects (such as tables and views) within a database that
are supported by some DBMSs: often a separate schema is associated with each user (and
‘schema’ in ODBC 3 replaced ‘owner’ in ODBC 2). In SQL-92, schemas are collected in
a ‘catalog’ which is often implemented as a database. Where schemas are implemented,
there is a current schema used to find unqualified table names, and tables in other schemas
can be referred to within SQL queries using the schema.table notation. You can think of

12which is the usual plural in this technical usage, athough schemata is more usual in English.

11

https://msdn.microsoft.com/en-us/library/ms713607%28VS.85%29.aspx

a schema as analogous to a name space; it allows related objects to be grouped together
without worrying about name clashes with other groups. (Some DBMSs will search for
unqualified table names in a search path: see the detailed descriptions below.)

Note that ‘schema’ is used in another sense in the database literature, for the design of a
database and in particular of tables, views and privileges.

Here are some details of various DBMSs’ interpretations of catalog and schema current
at the time of writing (mid 2009). (These descriptions are simplistic, and in some cases
experimental observations.)

• SQLite uses dotted names for alternative databases that are attached by an
ATTACH DATABASE command.13 There is a search path of databases, so it is only
necessary to use the dotted name notation when there are tables of the same name
on attached databases. The initial database is known as main and that used for
temporary tables as temp.

• MySQL uses catalog to refer to a database. In MySQL’s parlance, ‘schema’ is a
little-used synonym for ‘database’.

• PostgreSQL only allows a session to access one database, and does not use ‘catalog’
except to refer to the current database. Version 7.3 introduced schemas—users can
create their own schemas with a CREATE SCHEMA query. Tables are by default in the
public schema, and unqualified table names are searched for along a ‘search path’
of schemas (by default, containing public).

• Oracle uses schemas as synonymous with ‘owner’ (also known as ‘user’). There is no
way for a user to create additional schemas (that is not what CREATE SCHEMA does
in Oracle).

• IBM DB2 uses schemas as name spaces for objects that may lie on different databases:
using aliases allows objects to be in more than one schema. The initial current
schema is named the same as the user (SQLID in DB2 parlance), but users can create
additional schemas with CREATE SCHEMA statements.

• Microsoft SQL Server 2008 uses both catalog and schema, catalog for the database
and schema for the type of object, e.g. "sys" for most of the system tables/views and
(default) "dbo" for user tables. Further schemas can be created by users. The default
schema for a user can be set when the user is created and changed via ALTER USER.

Prior to SQL Server 2005, ‘schema’ meant ‘user’, and the search path for unqualified
names was the database user then "dbo".

• The Microsoft Excel and Access ODBC drivers do not use schemas, but do use
catalog to refer to other database/spreadsheet files.

• Mimer (www.mimer.com) uses schemas which are normally the same as users (which it
calls IDENT s), but users can create additional schemas with CREATE SCHEMA state-
ments. There are also system schemas. Mimer uses ‘schemata’ as the plural of
schema.

13and may be subsequently detached by a DETACH DATABASE command

12

www.mimer.com

It is often possible to use sqlTables to list the available catalogs or schemas: see its help
page for the driver-specific details.

RODBC usually works with tables in the current schema, but unless the connection was
opened with interpretDot = FALSE most functions will attempt to interpret the ‘dot-
ted name’ notation. The interpretation depends on the DBMS: the SQL-92 meaning is
schema.table and this is accepted by PostgreSQL, Microsoft SQL Server, Oracle, DB2 and
Mimer. However, MySQL uses database.table, and the functions try14 that interpretation
if they recognize a MySQL driver. Some DBMSs allow more than two components, but
these are not currently supported by the RODBC functions.

Functions sqlTables, sqlColumns and sqlPrimaryKeys have arguments catalog and
schema which in principle allow tables in other schemas to be listed or examined: however
these are only partially implemented in many current ODBC drivers. See the help page
for sqlTables for some further details.

For other uses, the trick is to select the schema(s) you want to use, which is done via an
SQL statement sent by sqlQuery. For Oracle you can set the default schema (owner) by

ALTER SESSION SET CURRENT SCHEMA = schema

whereas for PostgreSQL the search path can be changed via

SET search path TO schema1,schema2.

In DB2, creating an alias in the current schema can be used to access tables in other
schemas, and a CURRENT SCHEMA query can be used to change the current schema. In
MySQL and Microsoft SQL Server a database can be selected by a USE database query.

6 Internationalization Issues

Internationalization issues are made more complex by ODBC being a client-server system,
and the ODBC client (RODBC) and the server may be running on different machines with
different OSes on different continents. So the client may need some help.

In most cases numeric data are transferred to and from R in binary form, so the represen-
tation of the decimal point is not an issue. But in some cases it could be (e.g. decimal
rather than binary SQL data types will be transferred as character strings) and then the
decimal point to be used will be taken from options("dec"): if unset this is set when
RODBC is loaded from the setting of the current locale on the machine running R (via
Sys.localeconv). Some ODBC drivers (e.g. for Microsoft SQL Server, Oracle) allow the
locale (‘NLS’) to be used for numeric values to be selected for the connection.

The other internationalization issue is the character encoding used. When R and the
DBMS are running on the same machine this is unlikely to be an issue, and in many
cases the ODBC driver has some options to translate character sets. SQL is an ANSI
(US) standard, and DBMSs tended to assume that character data was ASCII or perhaps

14currerntly this is stymied by bugs in the ODBC driver, so SQLColumns is unable to report on tables in
specified databases.

13

8-bit. More recently DBMSs have started to (optionally or by default) to store data in
Unicode, which unfortunately means UCS-2 on Windows and UTF-8 elsewhere. So cross-
OS solutions are not guaranteed to work, but most do.

Encoding issues are best resolved in the ODBC driver or in DBMS settings. In the unusual
case that this cannot be done, the DBMSencoding argument to odbcDriverConnect allows
for recoding when sending data to or from the ODBC driver and thence the DBMS.

7 Excel Drivers

The Microsoft Excel ODBC drivers (Windows only) have a number of peculiarities which
mean that it should be used with care.

It seems that their concept of a ‘table’ is principally a named range. They treat worksheets
as system tables, and append a dollar to their name (making then non-standard SQL table
names: the quoting convention used is to enclose such names in square brackets).

Column names are taken as the first row of the named range/worksheet. Non-standard
SQL names are allowed here too, but the driver maps . to # in column names. Annoyingly,
sqlTables is allowed to select named ranges only by tableType = "TABLE" but not to
select only worksheets.

There are at least two known problems with reading columns that do not have a format
set before data entry, and so start with format ‘General’. First, the driver uses the first few
rows to determined the column type, and is over-fond of declaring ‘Numeric’ even when
there are non-numeric entries. The default number of rows consulted is 8, but attempts
to change this in the DSN setup are ignored. Second, if a column is declared as ‘Text’,
numeric entries will be read as SQL nulls and hence R NAs. Unfortunately, in neither case
does reformatting the column help.

The connection is by default read-only. It is possible to de-select this in the DSN (and
the convenience wrapper odbcConnectExcel has a readOnly = FALSE argument to do
so), but this does not support deletion, including SQL DROP, DELETE, UPDATE and ALTER

statements). In particular, sqlDrop will remove the data in a worksheet but not the
worksheet itself. The driver does allow a worksheet to be updated by sqlUpdate, and
for a new worksheet (with a different name from existing worksheets) to be created by
sqlSave (which also creates a named range).

As far as we know, no similar issues affect the Actual Technologies macOS Excel driver:
however, it allows only read-only access to Excel files and does not support Excel 2007-
and-later .xlsx files.

8 DBMS-specific tidbits

This section covers some useful DBMS-specific SQL commands and other useful details.

14

Recent versions of several DBMSs have a schema INFORMATION SCHEMA that holds many
predefined system views. These include MySQL (the name of a database, mainly populated
beginning with MySQL 5.1), Microsoft SQL Server and Mimer.

MySQL

Comments about MySQL are mostly applicable to its forks such as MariaDB.

We have already mentioned USE database as the way to change the database in use.
SHOW DATABASES lists the databases ‘for which you have some kind of privilege’, and can
have a LIKE clause to restrict the result to some pattern of database names.

The DESCRIBE table command is a compact way to get a description of a table or view,
similar to the most useful parts of the result of a call to sqlColumns. (It is also known as
SHOW COLUMNS FROM table.)

SHOW TABLES is the command to produce a table of the tables/views on the current
database, similar to sqlTables. For example,

> sqlQuery(channel, "USE ripley")

[1] "No Data"

> sqlQuery(channel, "SHOW TABLES")

Tables_in_ripley

1 USArrests

> sqlQuery(channel, "DESCRIBE USArrests")

Field Type Null Key Default Extra

1 State varchar(255) NO PRI NA NA

2 Murder double YES NA NA

3 Assault int(11) YES NA NA

4 UrbanPop int(11) YES NA NA

5 Rape double YES NA NA

SHOW FULL TABLES gives an additional additional column Table type, the types of the
tables/views.

There is useful information for end users in the INFORMATION SCHEMA database, much more
extensively as from MySQL 5.1.

Some of the non-standard behaviour can be turned off, e.g. starting MySQL with
--sql-mode=ANSI gives closer conformance to the standard, and this can be set for a
single session by

SET SESSION sql mode='ANSI'

To change just the behaviour of quotes (to use double quotes in place of backticks) replace
ANSI by ANSI QUOTE.

The maximum size of a char column is 255 characters. That of a varchar column is up
to 65535 characters (but there is a limit of 65535 bytes on the total size of a row), and
those with a maximum of 255 or less are stored more efficiently. Types text, mediumtext
and longtext can hold more, and are not subject to the row-size limit (text has default
maximum size 65535, the default RODBC limit on transfers).

15

There are binary, varbinary and blob types which are very similar to their character
counterparts but with lengths in bytes.

PostgreSQL

Table pg tables lists all tables in all schemas; you probably want to filter on
tableowner='current user', e.g.

> sqlQuery(channel, "select * from pg_tables where tableowner='ripley'")
schemaname tablename tableowner tablespace hasindexes hasrules hastriggers

1 public dtest ripley NA 0 0 0

There are both ANSI and Unicode versions of the ODBC driver on Windows: they provide
many customizations. One of these is read-only access, another is if system tables are
reported by sqlTables.

The default size of a varchar column is unlimited, but those with maximum length of 126
bytes or less are stored more efficiently. However, the ODBC interface has limits, which
can be set in the configuration options. These include the maximum sizes for varchar

(default 254) and longvarchar (default 8190), and how to handle unknown column sizes
(default as the maximum), and whether ‘Text’ is taken as varchar or longvarchar (which
affects the reported maximum size for a varchar column).

There is a single binary data type, bytea.

SQLite

These comments are only about SQLite 3.x.

Table sqlite master lists tables and indices, and the sql column gives the SQL command
used. E.g.

> tmp <- sqlQuery(channel, "select * from sqlite_master")

> tmp[, "sql"] <- substr(tmp[, "sql"], 1, 16)

> tmp

type name tbl_name rootpage sql

1 table USArrests USArrests 2 CREATE TABLE "US

2 index sqlite_autoindex_USArrests_1 USArrests 4 <NA>

My current versions of Christian Werner’s SQLite ODBC driver store character data in the
current locale’s charset (e.g. UTF-8) on Unix-alikes and by default in Unicode (UCS-2)
on Windows (unless de-selected in the DSN configuration).

The default collation for text data is byte-by-byte comparisons, so avoid comparing non-
ASCII character data in SQLite.

Actual Technologies sell an SQLite driver for macOS which requires
believeNRows = FALSE and has a number of other issues including that it seems
not to support dropping tables. (Christian Werner’s SQLite ODBC driver was easy to
install from the sources and worked correctly.)

16

Version of the SQLite ODBC driver since 0.87 have segfaulted on the test suite.

Oracle

Tables cat, user table and user catalog contain useful information on tables. Informa-
tion on columns is in all tab columns, e.g.

> sqlQuery(channel,

"select * from all tab columns where table_name='USArrests'")
OWNER TABLE_NAME COLUMN_NAME DATA_TYPE DATA_TYPE_MOD

1 RIPLEY USArrests State VARCHAR2 NA

2 RIPLEY USArrests Murder FLOAT NA

3 RIPLEY USArrests Assault NUMBER NA

4 RIPLEY USArrests UrbanPop NUMBER NA

5 RIPLEY USArrests Rape FLOAT NA

...

The Windows ODBC driver we tested had an option for a read-only connection.

Oracle’s character data types are CHAR, VARCHAR2 (character set specified when the
database was created) and NCHAR, NVARCHAR2 (Unicode), as well as CLOB and NCLOB for
large character strings. For the non-Unicode types the units of length are either bytes or
charactor (set as a default for the database) but can be overriden by adding a BYTE or
CHAR qualifier. The limits are 4000 bytes apart from for CLOB and NCLOB, which have very
high limits.

There are RAW and BLOB data types.

DB2

Schema syscat contains many views with information about tables: for example view
syscat.tables lists all tables, and

> sqlQuery(channel,

"select * from syscat.columns where tabname='USArrests'")
TABSCHEMA TABNAME COLNAME COLNO TYPESCHEMA TYPENAME LENGTH SCALE

1 RIPLEY USArrests State 0 SYSIBM VARCHAR 255 0

2 RIPLEY USArrests Murder 1 SYSIBM DOUBLE 8 0

3 RIPLEY USArrests Assault 2 SYSIBM INTEGER 4 0

4 RIPLEY USArrests UrbanPop 3 SYSIBM INTEGER 4 0

5 RIPLEY USArrests Rape 4 SYSIBM DOUBLE 8 0

...

The CHAR type can have size up to 254 bytes: the maximum size of the VARCHAR type is
32762 bytes. For larger character strings there is the CLOB type (up to 2Gb). These types
can be used to store data in a MBCS, including various Unicode encodings.

There are corresponding BINARY, VARBINARY and BLOB data types.

17

Microsoft SQL Server

There are several hundred views in schemas INFORMATION SCHEMA and sys which will be
listed by sqlTables and also by the stored procedure sp tables. Another way to list
tables is

SELECT * FROM sysobjects WHERE xtype='U'

where the condition restricts to user tables.

USE database changes the database in use.

Types char and varchar have a maximum specified size of 8000 bytes. It is possible to
use varchar(max) (previously known as text) for a limit of 2Gb, but this may not work
well with the ODBC interface. The Unicode types nchar and nvarchar have a maximum
specified size of 4000 characters: again there is nvarchar(max) (formerly ntext).

There are corresponding binary and varbinary data types (with image as an earlier name
for varbinary(max)).

Mimer

There are tens of views in schema INFORMATION SCHEMA which can be read by SQL SELECT

queries of the form

SELECT column-list
FROM INFORMATION_SCHEMA.view-name
WHERE condition

See the Mimer SQL Reference Manual chapter on Data Dictionary views for full details:
two views are TABLES and VIEWS.

A session can be set to be read-only by the SQL command SET SESSION READ ONLY.

Mimer uses Latin-1 for its default character types but Unicode types (NCHAR and NVARCHAR)
are also available. Unsurprisingly given that the company is Swedish, different collations
are allowed for both Latin-1 and Unicode character types.

The char and varchar columns have a maximum size of 15000 bytes: the clob data type is
available for larger character columns. The nchar and nvarchar columns have a maximum
size of 5000 characters: the nclob data type is available for larger Unicode columns.

There are corresponding binary, varbinary and blob binary data types.

18

A Installation

RODBC is simple to install, and binary distributions are available for Windows from
CRAN.

To install from the sources, an ODBC Driver Manager is required. Windows normally
comes with one (it is part of MDAC and can be installed separately if required). macOS
from 10.2 to 10.8 shipped with iODBC (http://www.iodbc.org, this is also available for
other Unix-alikes) but from 10.9 the headers are no longer included in the macOS SDK.

For other systems the driver manager of choice is likely to be unixODBC, part of almost all
Linux distributions and with sources downloadable from http://www.unixODBC.org. In
Linux binary distributions it is likely that package unixODBC-devel or unixodbc-dev or
some such will be needed.

Both unixODBC and iODBC can be installed from the sources under macOS: they need
ODBC drivers compiled for the driver manager in use. At least for macOS 10.9–12, all
that is required for iODBC is to unpack the sources and use their headers by something like

ODBC_INCLUDE=/path/to/libiodbc-srcs/include' R CMD INSTALL RODBC

and the iODBC sources used by Apple can be found at https://opensource.apple.com.

In most cases the package’s configure script will find the driver manager files, and the
package will install with no extra settings. However, if further information is required,
use --with-odbc-include and --with-odbc-lib or environment variables ODBC INCLUDE

and ODBC LIBS to set the include and library paths as needed. A specific ODBC driver
manager can be specified by the --with-odbc-manager configure option, with likely
values odbc or iodbc: if this is done for odbc and the program odbc config is found, it
is used to set the libpath as a last resort (it is often wrong), and to add any additional
CFLAGS.

Sources of drivers

Keeping track of ODBC drivers is a never-ending task, and this section is no longer actively
maintained. URIs are liable to move or disappear.

A list of drivers for unixODBC is maintained15 at https://www.unixodbc.org/drivers.

html. unixODBC ships with a number of drivers (although in most cases the DBMS vendor’s
driver is preferred)—these include for MySQL, PostgreSQL, Mimer and flat files.

MySQL provides drivers under the name ‘Connector/ODBC’ (formerly MyODBC’) in
source form, and binaries for all common 32-bit and most 64-bit R platforms. These are
said to work also with MariaDB.

PostgreSQL has an associated project at http://pgfoundry.org/projects/psqlodbc/

and another project for at http://pgfoundry.org/projects/odbcng/. (Documentation
for psqlodbc is currently hard to find, but there is some in the PostgreSQL 7.2 manual

15that the author works for Easysoft is conspicuous.

19

http://www.iodbc.org
http://www.unixODBC.org
https://opensource.apple.com
https://www.unixodbc.org/drivers.html
https://www.unixodbc.org/drivers.html
http://pgfoundry.org/projects/psqlodbc/
http://pgfoundry.org/projects/odbcng/

at http://www.postgresql.org/docs/7.2/static/odbc.html from before it was unbun-
dled.) There are drivers for Unix-alikes and Windows – 64-bit Windows support is available
as from PostgreSQL 9.0.

An SQLite ODBC driver for Unix-alikes, including macOS, and (32- and 64-bit) Windows
is available from http://www.ch-werner.de/sqliteodbc/.

Oracle provides ODBC drivers as a supplement to its ‘Instant Client’ for some of
its platforms (including 32/64-bit Windows and Linux but not currently macOS).
See https://www.oracle.com/technetwork/database/features/instant-client/

index-097480.html One quirk of the Windows drivers is that the Oracle binaries must
be in the path, so PATH should include e.g. c:\Oracle\bin.

For IBM’s DB2, search its site for drivers for ‘ODBC and CLI’. There are some notes
about using this under Linux at https://www.unixodbc.org/doc/db2.html.

Mimer (www.mimer.com) is a cross-platform DBMS with integral ODBC support, so

‘The Mimer SQL setup process automatically installs an ODBC driver when
the Mimer SQL client is installed on any Windows or UNIX platform.’

The ‘HowTos’ at http://developer.mimer.se/howto/index.tml provide some useful
hints.

Some details of the 32-bit Microsoft ‘ODBC Desktop Database Drivers’ (for Access, Excel,
Paradox, dBase and text files on Windows) can be found at https://msdn.microsoft.

com/en-us/library/ms709326%28VS.85%29.aspx. There is also a Visual FoxPro driver
and an (outdated) Oracle driver.

32-bit Windows drivers for Access 2007 and Excel 2007 are bundled with Office 2007 but
can be installed separately via the installer AccessDatabaseEngine.exe available from
https://www.microsoft.com/en-us/download/details.aspx?id=23734.

The Access/Excel 2010 versions at https://www.microsoft.com/en-us/download/

details.aspx?id=13255 have a 64-bit version: however the 64-bit drivers cannot be in-
stalled alongside 32-bit versions of Office (as far as we know, and definitely not for Office
2007).

For recent versions of macOS, low-cost and easy-to-use iODBC drivers are available from
https://www.actualtech.com/products.php: these cover MySQL/PostgreSQL/SQLite
(one driver), SQL Server/Sybase, Oracle, and a read-only driver for Access and related
formats (including Access 2007 and Excel, but not Excel 2007). That SQLite driver needs
believeNRows = FALSE set. Currently at least, installing those drivers on 10.9 installs
iODBC.

macOS drivers for MySQL, PostgreSQL and the major commercial databases are available
from http://uda.openlinksw.com/.

20

http://www.postgresql.org/docs/7.2/static/odbc.html
http://www.ch-werner.de/sqliteodbc/
https://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
https://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
https://www.unixodbc.org/doc/db2.html
www.mimer.com
http://developer.mimer.se/howto/index.tml
https://msdn.microsoft.com/en-us/library/ms709326%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms709326%28VS.85%29.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=23734
https://www.microsoft.com/en-us/download/details.aspx?id=13255
https://www.microsoft.com/en-us/download/details.aspx?id=13255
https://www.actualtech.com/products.php
http://uda.openlinksw.com/

$ cat /etc/odbcinst.ini

[MySQL]

Description = ODBC 3.51.26 for MySQL

Driver = /usr/lib64/libmyodbc3.so

FileUsage = 1

[MySQL ODBC 5.1 Driver]

Description = ODBC 5.1.05 for MySQL

Driver = /usr/lib64/libmyodbc5.so

UsageCount = 1

[PostgreSQL]

Description = ODBC for PostgreSQL

Driver = /usr/lib64/psqlodbc.so

FileUsage = 1

[sqlite3]

Description = sqliteodbc

Driver = /usr/local/lib64/libsqlite3odbc.so

Setup = /usr/local/lib64/libsqlite3odbc.so

FileUsage = 1

Figure 1: A system ODBC driver file from a x86 64 Fedora 10 Linux system using
unixODBC.

Specifying ODBC drivers

The next step is to specify the ODBC drivers to be used for specific DBMSs. On Windows
installing the drivers will register them automatically. This might happen as part of the
installation on other systems, but usually does not.

Both unixODBC and iODBC store information on drivers in configuration files, normally
system-wide in /etc/odbcinst.ini and per-user in ~/.odbcinst.ini. However, the
system location can vary, and on systems with unixODBC can be found by at the Unix
command line by one of

$ odbcinst -j

$ odbc config --odbcinstini

For iODBC use iodbc config: on macOS the system location used by Apple was
/Library/ODBC/odbcinst.ini.

The format can be seen from figure 1. (unixODBC allows Driver64 here to allow for
different paths on 32-bit and 64-bit platforms sharing a file system.) The MySQL and
PostgreSQL drivers were installed from the Fedora RPMs mysql-connector-odbc and
postgresql-odbc, and also from the mysql-connector-odbc RPM in the MySQL distri-
bution (which inserted the entry in the driver file).

The MySQL manual gives detailed information (including screenshots) of installing its
drivers and setting up DSNs that may also be informative to users of other DBMSs.

21

B Specifying DSNs

The ODBC driver managers have ‘User DSNs’ and ‘System DSNs’: these differ only in
where the information is stored, the first on a per-user basis and the second for all users
of the system.

Windows has a GUI16 to set up DSNs, called something like ‘Data Sources (ODBC)’ under
‘Administrative Tools’ in the Control Panel. You can add, remove and edit (‘configure’)
DSNs there (see figure 2). When adding a DSN, first select the ODBC driver and then
complete the driver-specific dialog box. There will usually be an option to test the DSN
and it is wise to do so.

If Rgui is to be used on Windows, incomplete DSNs can be created and the dialog box will
be brought up for completion when odbcConnect is called—this can be helpful to avoid
storing passwords in the Windows Registry or to allow alternate users or databases. On
that platform, calling odbcDriverConnect() with no arguments will bring up the main
ODBC Data Sources dialog box to allow a DSN to be constructed on the fly.

macOS prior to 10.6 came with a very similar GUI (figure 3) found at Applications /
Utilities / ODBC Administrator. This has been available as a download from https://

support.apple.com/kb/DL895. Another GUI for macOS is available from http://www.

odbcmanager.net/index.php.

On Unix-alikes DSNs can also be specified in files (and the graphical tools just manip-
ulate these files). The system-wide file is usually /etc/odbc.ini and the per-user file17

~/.odbc.ini. Some examples of the format are shown figure 5.

What fields are supported is driver-specific (and it can be hard to find documentation).
There is no clear distinction between fields that specify the driver and those which specify
the DSN, so any parts of the driver specification which might differ between connections
can be used in the DSN file.

Things that are often set here are if the connection is read-only (test pg is not readonly)
and the character encoding to be used.

Command-line programs isql (unixODBC) and iodbctest (iODBC) can be used to test a
DSN that has been created manually in a file. The formats are

$ isql -v dsn db˙username db˙password
$ iodbctest

Both give a command-line SQL interface: use quit to terminate.

16Extra care is needed on a 64-bit version of Windows, as this GUI shows only 64-bit settings for ODBC,
including drivers and DSNs. If you are running 32-bit R (and hence 32-bit ODBC) on 64-bit Windows, you
need the 32-bit version of the GUI at something like c:\Windows\SysWOW64\odbcad32.exe – and beware
that both 32- and 64-bit versions are called odbcad32.exe.

17~/Library/ODBC/odbc.ini on Mac OS X.

22

https://support.apple.com/kb/DL895
https://support.apple.com/kb/DL895
http://www.odbcmanager.net/index.php
http://www.odbcmanager.net/index.php

Figure 2: (Top) The main Data Sources (ODBC) dialog box from a Windows XP system.
(Bottom) The dialog box to select a driver that comes up when the Add button is clicked.

23

Figure 3: (Top) The main ODBC Administrator dialog box from a macOS 10.5 system.
(Bottom) A page of the dialog box to specify a DSN for the Actual Technologies Ac-
cess/Excel driver.

24

Figure 4: The dialog box of ODBCconfig on Fedora 10 Linux, and the Configure screen for
the SQLite driver.

25

[test_mysql]

Description = test MySQL

Driver = MySQL

Trace = No

Server = localhost

Port = 3306

Database = test

[test_mysql5]

Description = myodbc5

Driver = MySQL ODBC 5.1 Driver

Server = gannet

Port = 3306

Database = ripley

[test_pg]

Description = test PostgreSQL

Driver = PostgreSQL

Trace = No

TraceFile =

ServerName = localhost

UserName = ripley

Port = 5432

Socket =

Database = testdb

ReadOnly = 0

[test_sqlite3]

Description = test SQLite3

Driver = sqlite3

Database = /tmp/mysqlite3.db

Figure 5: A personal (~/.odbc.ini) file from a Fedora 10 Linux system using unixODBC.

26

Figure 6: Parts of the ODBC driver configuration screens on Windows XP for Microsoft
Access, MySQL Connector/ODBC 5.1, Oracle’s ODBC driver and Microsoft SQL Server.

27

C Internals

The appendix is in part an aide memoire for the maintainer, but may interest the curious
user.

RODBC connection objects are an integer with several attributes: they are numbered
consecutively in the current session. For example

> channel <- odbcConnect("test")

> unclass(channel)

[1] 1

attr(,"connection.string")

[1] "DATABASE=ripley;DESCRIPTION=myodbc;DSN=test;OPTION=0;PORT=3306;SERVER=localhost;"

attr(,"handle ptr")

<pointer: 0x233e6c0>

attr(,"case")

[1] "nochange"

attr(,"id")

[1] 11371

attr(,"believeNRows")

[1] TRUE

attr(,"colQuote")

[1] "`"
attr(,"tabQuote")

[1] "`"
attr(,"encoding")

[1] ""

attr(,"rows at time")

[1] 100

attr(,"isMySQL")

[1] FALSE

Most of the attributes record the arguments of odbcDriverConnect. The
"connection.string" attribute is as returned by SQLDriverConnect and list driver-
specific parameters separated (and perhaps terminated) by a semicolon. The "id" at-
tribute is a random integer used for integrity checks (and in particular to reject connec-
tion objects should they be saved and restored in a different session). The "isMySQL"

attribute is used both to select the default quote character and the interpretation of
qualifier.table names.

The main structure of the connection is kept as a C struct, a pointer to which is passed
around as the R external pointer "handle ptr". This has a finalizer that will close the
connection when there is no longer an R object referring to it (including at the end of
the R session), with a warning unless the connection has already been closed by close or
odbcClose. In addition, a C-level table keeps the pointers of the first 1000 connections of
an R session, to enable odbcCloseAll to close them.

The struct is currently defined as

typedef struct rodbcHandle {
SQLHDBC hDbc; /* connection handle */

SQLHSTMT hStmt; /* statement handle */

SQLLEN nRows; /* number of rows and columns in result set */

SQLSMALLINT nColumns;

int channel; /* as stored on the R-level object */

int id; /* ditto */

int useNRows; /* value of believeNRows */

/* entries used to bind data for result sets and updates */

28

COLUMNS *ColData;

int nAllocated;

SQLUINTEGER rowsFetched; /* use to indicate the number of rows fetched */

SQLUINTEGER rowArraySize; /* use to indicate the number of rows we expect back */

SQLUINTEGER rowsUsed; /* for when we fetch more than we need */

SQLMSG *msglist; /* root of linked list of messages */

SEXP extPtr; /* the external pointer address */

} RODBCHandle, *pRODBCHandle;

Most ODBC operations work by sending a query, explicitly or implicitly via e.g.
sqlColumns, and this creates a result set which is transferred to an R data frame by
sqlGetResults. nRows and nCols indicate the size of the pending result set, with
nCols = -1 used if there are no pending results.

ODBC works with various handles. There is a SQLHENV handle for the environment that
RODBC opens when a connection is first opened or DSNs are listed—its main use is to
request ODBC 3 semantics. Then each connection has a SQLHDBC handle, and each query
(statement) a SQLHSTMT handle. Argument literal=TRUE of sqlTables and sqlColumns

is used to set the SQL_ATTR_METADATA_ID attribute of the statement handle to be true.

All the functions18 that create a result set call C function cachenbind. This allocates
buffers under the colData pointer and binds the result set to them by SQLBindCol. Then
when sqlGetResults calls the C function SQLFetch or SQLFetchScroll the results for
one or more (up to MAX ROWS FETCH = 1024) rows are loaded into the buffers and then
copied into R vectors.

Prior to RODBC 1.3-0 the default was to fetch a row at a time, but it is now to fetch up
to 100 rows at a time. Entries rowsArraySize and rowsFetched are used to indicate how
many rows were requested and how many were available. Since e.g. sqlFetch allows a
maximum number of rows to be returned in the data frame, rowsUsed indicates how many
of the rows last fetched have so far been returned to R.

The buffers are part of the ColData entry, which is an array of COLUMNS structures, one of
each column in the result set. These have the form

typedef struct cols {
SQLCHAR ColName[256];

SQLSMALLINT NameLength;

SQLSMALLINT DataType;

SQLULEN ColSize;

SQLSMALLINT DecimalDigits;

SQLSMALLINT Nullable;

char *pData;

int datalen;

SQLDOUBLE RData [MAX ROWS FETCH];

SQLREAL R4Data[MAX ROWS FETCH];

SQLINTEGER IData [MAX ROWS FETCH];

SQLSMALLINT I2Data[MAX ROWS FETCH];

SQLLEN IndPtr[MAX ROWS FETCH];

} COLUMNS;

The first six entries are returned by a call to SQLDescribeCol: DataType is used to select
the buffer to use. There are separate buffers for double-precision, single-precision, 32-bit
and 16-bit integer and character/byte data. When character/data buffers are allocated,

18 odbcQuery, sqlColumns, sqlPrimaryKeys, sqlTables and sqlTypeInfo.

29

datalen records the length allocated per row (which is based on the value returned as
ColSize). The IndPtr value is used to record the actual size of the item in the current
row for variable length character and binary types, and for all nullable types the special
value SQL NULL DATA (-1) indicates an SQL null value.

The other main C-level operation is to send data to the ODBC driver for sqlSave and
sqlUpdate. These use INSERT INTO and UPDATE queries respectively, and for fast = TRUE

use parametrized queries. So we have the queries (split across lines for display)

> sqlSave(channel, USArrests, rownames = "State", addPK = TRUE, verbose = TRUE)

Query: CREATE TABLE "USArrests"

("State" varchar(255) NOT NULL PRIMARY KEY, "Murder" double, "Assault" integer,

"UrbanPop" integer, "Rape" double)

Query: INSERT INTO "USArrests"

("State", "Murder", "Assault", "UrbanPop", "Rape") VALUES (?,?,?,?,?)

Binding: 'State' DataType 12, ColSize 255

Binding: 'Murder' DataType 8, ColSize 15

Binding: 'Assault' DataType 4, ColSize 10

Binding: 'UrbanPop' DataType 4, ColSize 10

Binding: 'Rape' DataType 8, ColSize 15

Parameters:

...

> sqlUpdate(channel, foo, "USArrests", verbose=TRUE)

Query: UPDATE "USArrests" SET "Assault"=? WHERE "State"=?

Binding: 'Assault' DataType 4, ColSize 10

Binding: 'State' DataType 12, ColSize 255

Parameters:

...

At C level, this works by calling SQLPrepare to record the insert/update query on the
statement handle, then calling SQLBindParameter to bind a buffer for each column with
values to be sent, and finally in a loop over rows copying the data into the buffer and
calling SQLExecute on the statement handle.

The same buffer structure is used as when retrieving result sets. The difference is that the
arguments which were ouptuts from SQLBindCol and inputs to SQLBindParameter, so we
need to use sqlColumns to retrieve the column characteristics of the table and pass these
down to the C interface.

30

	ODBC Concepts
	Basic Usage
	Making a connection
	Reading from a database
	Table Names
	Types of table

	Writing to a Database
	Primary keys and indices

	Data types
	Data types when saving a data frame
	SQLite
	ODBC data types

	Schemas and Catalogs
	Internationalization Issues
	Excel Drivers
	DBMS-specific tidbits
	Installation
	Specifying DSNs
	Internals

