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Abstract

Least-squares means are predictions from a linear model, or averages thereof. They are
useful in the analysis of experimental data for summarizing the effects of factors, and for testing
linear contrasts among predictions. The lsmeans package provides a simple way of obtaining
least-squares means and contrasts thereof. It supports many models fitted by R core packages
(as well as a few key contributed ones) that fit linear or mixed models, and provides a simple
way of extending it to cover more model classes.

1 Introduction

least-squares means (LS means for short) for a linear model are simply predictions—or averages
thereof—over a regular grid of predictor settings which I call the reference grid. They date back
at least to Harvey (1960) and his associated computer program LSML (Harvey, 1977) and the
contributed SAS procedure named HARVEY (Harvey, 1976). Later, they were incorporated via
LSMEANS statements for various linear model procedures such as GLM in the regular SAS releases.
See also Goodnight and Harvey (1997) and SAS Institute Inc. (2012) for more information about
the SAS implementation.

In simple analysis-of-covariance models, LS means are the same as covariate-adjusted means.
In unbalanced factorial experiments, LS means for each factor mimic the main-effects means but
are adjusted for imbalance. The latter interpretation is quite similar to the “unweighted means”
method for unbalanced data, as presented in old design books.

LS means are not always well understood, in part because the term itself is confusing. Searle
et al. (1980) discusses exactly how they are defined for various factorial, nested, and covariance
models. Searle et al. suggest the term“predicted marginal means”(or PMMs) as a better descriptor.
However, the term “least-squares means” was already well established in the SAS software, and it
has stuck.

The most important things to remember are:

� LS means are computed relative to a reference grid.

� Once the reference grid is established, LS means are simply predictions on this grid, or
marginal averages of a table of these predictions.

A user who understands these points will know what is being computed, and thus can judge whether
or not LS means are appropriate for the analysis.
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2 The reference grid

Since the reference grid is fundamental, it is our starting point. For each predictor in the model,
we define a set of one or more reference levels. The reference grid is then the set of all combinations
of reference levels. If not specified explicitly, the default reference levels are obtained as follows:

� For each predictor that is a factor, its reference levels are the unique levels of that factor.

� Each numeric predictor has just one reference level—its mean over the dataset.

So the reference grid depends on both the model and the dataset.

2.1 Example: Orange sales

To illustrate, consider the oranges data provided with lsmeans. This dataset has sales of two
varieties of oranges (response variables sales1 and sales2) at 6 stores (factor store), over a
period of 6 days (factor day). The prices of the oranges (covariates price1 and price2) fluctuate
in the different stores and the different days. There is just one observation on each store on each
day.

For starters, let’s consider an additive covariance model for sales of the first variety, with the
two factors and both price1 and price2 as covariates (since the price of the other variety could
also affect sales).

R> library("lsmeans")

R> oranges.lm1 <- lm(sales1 ~ price1 + price2 + day + store, data = oranges)

R> anova(oranges.lm1)

Analysis of Variance Table

Response: sales1

Df Sum Sq Mean Sq F value Pr(>F)

price1 1 516.6 516.6 29.100 1.76e-05

price2 1 62.7 62.7 3.533 0.07287

day 5 422.2 84.4 4.757 0.00395

store 5 223.8 44.8 2.522 0.05835

Residuals 23 408.3 17.8

The ref.grid function in lsmeans may be used to establish the reference grid. Here is the default
one:

R> ( oranges.rg1 <- ref.grid(oranges.lm1) )

'ref.grid' object with variables:

price1 = 51.222

price2 = 48.556

day = 1, 2, 3, 4, 5, 6

store = 1, 2, 3, 4, 5, 6

As outlined above, the two covariates price1 and price2 have their means as their sole reference
level; and the two factors have their levels as reference levels. The reference grid thus consists of
the 1× 1× 6× 6 = 36 combinations of these reference levels. LS means are based on predictions
on this reference grid, which we can obtain using predict or summary:
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R> summary(oranges.rg1)

price1 price2 day store prediction SE df

51.2222 48.5556 1 1 2.91841 2.71756 23

51.2222 48.5556 2 1 3.84880 2.70134 23

51.2222 48.5556 3 1 11.01857 2.53456 23

51.2222 48.5556 4 1 6.09629 2.65137 23

51.2222 48.5556 5 1 12.79580 2.44460 23

51.2222 48.5556 6 1 8.74878 2.78618 23

51.2222 48.5556 1 2 4.96147 2.37774 23

51.2222 48.5556 2 2 5.89187 2.33558 23

51.2222 48.5556 3 2 13.06163 2.41645 23

51.2222 48.5556 4 2 8.13935 2.35219 23

51.2222 48.5556 5 2 14.83886 2.46615 23

51.2222 48.5556 6 2 10.79184 2.33760 23

51.2222 48.5556 1 3 3.20089 2.37774 23

51.2222 48.5556 2 3 4.13128 2.33558 23

51.2222 48.5556 3 3 11.30105 2.41645 23

51.2222 48.5556 4 3 6.37876 2.35219 23

51.2222 48.5556 5 3 13.07828 2.46615 23

51.2222 48.5556 6 3 9.03126 2.33760 23

51.2222 48.5556 1 4 6.19876 2.36367 23

51.2222 48.5556 2 4 7.12915 2.35219 23

51.2222 48.5556 3 4 14.29891 2.43168 23

51.2222 48.5556 4 4 9.37663 2.38865 23

51.2222 48.5556 5 4 16.07614 2.51909 23

51.2222 48.5556 6 4 12.02912 2.36469 23

51.2222 48.5556 1 5 5.54322 2.36312 23

51.2222 48.5556 2 5 6.47361 2.33067 23

51.2222 48.5556 3 5 13.64337 2.36367 23

51.2222 48.5556 4 5 8.72109 2.33760 23

51.2222 48.5556 5 5 15.42060 2.39554 23

51.2222 48.5556 6 5 11.37358 2.35232 23

51.2222 48.5556 1 6 10.56374 2.36668 23

51.2222 48.5556 2 6 11.49413 2.33925 23

51.2222 48.5556 3 6 18.66390 2.34784 23

51.2222 48.5556 4 6 13.74161 2.34130 23

51.2222 48.5556 5 6 20.44113 2.37034 23

51.2222 48.5556 6 6 16.39411 2.37054 23

2.2 LS means as marginal averages over the reference grid

The ANOVA indicates there is a significant day effect after adjusting for the covariates, so we might
want to do a follow-up analysis that involves comparing the days. The lsmeans function provides
a starting point:

R> lsmeans(oranges.rg1, "day") ## or lsmeans(oranges.lm1, "day")

day lsmean SE df lower.CL upper.CL

1 5.56442 1.76808 23 1.90686 9.22197
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2 6.49481 1.72896 23 2.91818 10.07143

3 13.66457 1.75150 23 10.04131 17.28783

4 8.74229 1.73392 23 5.15540 12.32918

5 15.44180 1.78581 23 11.74758 19.13603

6 11.39478 1.76673 23 7.74003 15.04953

Results are averaged over the levels of: store

Confidence level used: 0.95

These results, as indicated in the annotation in the output, are in fact the averages of the predictions
shown earlier, for each day, over the 6 stores. The above LS means (often called “adjusted means”)
are not the same as the overall means for each day:

R> with(oranges, tapply(sales1, day, mean))

1 2 3 4 5 6

7.87275 7.10060 13.75860 8.04247 12.92460 11.60365

These unadjusted means are not comparable with one another because they are affected by the
differing price1 and price2 values on each day, whereas the LS means are comparable because
they use predictions at uniform price1 and price2 values.

Note that one may call lsmeans with either the reference grid or the model. If the model is
given, then the first thing it does is create the reference grid; so if the reference grid is already
available, as in this example, it’s more efficient to make use of it.

For users who dislike the term “LS means,” there is also a pmmeans function (for predicted
marginal means) which is an alias for lsmeans but relabels the lsmean column in the summary.

2.3 Altering the reference grid

The wixcodeat argument may be used to override defaults in the reference grid. The user may
specify this argument either in a ref.grid call or an lsmeans call; and should specify a list with
named sets of reference levels. Here is a silly example:

R> lsmeans(oranges.lm1, "day", at = list(price1 = 50,

price2 = c(40,60), day = c("2","3","4")) )

day lsmean SE df lower.CL upper.CL

2 7.72470 1.73517 23 4.13524 11.3142

3 14.89446 1.75104 23 11.27217 18.5168

4 9.97218 1.76613 23 6.31866 13.6257

Results are averaged over the levels of: price2, store

Confidence level used: 0.95

Here, we restricted the results to three of the days, and used different prices. One possible surprise
is that the predictions are averaged over the two price2 values. That is because price2 is no
longer a single reference level, and we average over the levels of all factors not used to split-out
the LS means. This is probably not what we want.1 To get separate sets of predictions for each

1The default reference grid produces LS means exactly as described in Searle et al. (1980). However, an altered
reference grid containing more than one value of a covariate, such as in this example, departs from (or generalizes,
if you please) their definition by averaging with equal weights over those covariate levels. It is not a good idea here,
but there is an example later in this vignette where it makes sense.
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price2, one must specify it as another factor or as a by factor in the lsmeans call (we will save
the result for later discussion):

R> org.lsm <- lsmeans(oranges.lm1, "day", by = "price2",

at = list(price1 = 50, price2 = c(40,60), day = c("2","3","4")) )

R> org.lsm

price2 = 40:

day lsmean SE df lower.CL upper.CL

2 6.23623 1.88711 23 2.33245 10.1400

3 13.40599 2.11938 23 9.02173 17.7903

4 8.48371 1.86651 23 4.62254 12.3449

price2 = 60:

day lsmean SE df lower.CL upper.CL

2 9.21317 2.10945 23 4.84944 13.5769

3 16.38293 1.90522 23 12.44169 20.3242

4 11.46065 2.17805 23 6.95500 15.9663

Results are averaged over the levels of: store

Confidence level used: 0.95

Note: We could have obtained the same results using any of these:

R> lsmeans(oranges.lm1, ~ day | price, at = ... ) # Ex 1

R> lsmeans(oranges.lm1, c("day","price2"), at = ... ) # Ex 2

R> lsmeans(oranges.lm1, ~ day * price, at = ... ) # Ex 3

Ex 1 illustrates the formula method for specifying factors, which is more compact. The | character
replaces the by specification. Ex 2 and Ex 3 produce the same results, but their results are displayed
as one table (with columns for day and price) rather than as two separate tables.

3 Working with the results

3.1 Objects

The ref.grid function produces an object of class "ref.grid", and the lsmeans function produces
an object of class "lsmobj", which is a subclass of "ref.grid". There is really no practical
difference between these two classes except for their show methods—what is displayed by default—
and the fact that an "lsmobj" is not (necessarily) a true reference grid as defined earlier in this
article. Let’s use the str function to examine the "lsmobj" object just produced:

R> str(org.lsm)

'lsmobj' object with variables:

day = 2, 3, 4

price2 = 40, 60

We no longer see the reference levels for all predictors in the model—only the levels of day and
price2. These act like reference levels, but they do not define the reference grid upon which the
predictions are based.
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3.2 Summaries

There are several methods for "ref.grid" (and hence also for "lsmobj") objects. One already seen
is summary. It has a number of arguments—see its help page. In the following call, we summarize
days.lsm differently than before. We will also save the object produced by summary for further
discussion.

R> ( org.sum <- summary(org.lsm, infer = c(TRUE,TRUE),

level = .90, adjust = "bon", by = "day") )

day = 2:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 6.23623 1.88711 23 2.33245 10.1400 3.305 0.0062

60 9.21317 2.10945 23 4.84944 13.5769 4.368 0.0005

day = 3:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 13.40599 2.11938 23 9.02173 17.7903 6.325 <.0001

60 16.38293 1.90522 23 12.44169 20.3242 8.599 <.0001

day = 4:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 8.48371 1.86651 23 4.62254 12.3449 4.545 0.0003

60 11.46065 2.17805 23 6.95500 15.9663 5.262 <.0001

Results are averaged over the levels of: store

Confidence level used: 0.9

Conf-level adjustment: bonferroni method for 2 estimates

P value adjustment: bonferroni method for 2 tests

The infer argument causes both confidence intervals and tests to be produced; the default confi-
dence level of .95 was overridden; a Bonferroni adjustment was applied to both the intervals and
the P values; and the tables are organized the opposite way from what we saw before.

What kind of object was produced by summary? Let’s see:

R> class(org.sum)

[1] "summary.ref.grid" "data.frame"

The "summary.ref.grid" class is an extension of "data.frame". It includes some attributes that,
among other things, cause additional messages to appear when the object is displayed. But it can
also be used as a "data.frame" if the user just wants to use the results computationally. For
example, suppose we want to convert the LS means from dollars to Russian rubles (at the July 13,
2014 exchange rate):

R> transform(org.sum, lsrubles = lsmean * 34.2)

day price2 lsmean SE df lower.CL upper.CL t.ratio p.value lsrubles

1 2 40 6.23623 1.88711 23 2.33245 10.1400 3.30465 6.19070e-03 213.279

2 3 40 13.40599 2.11938 23 9.02173 17.7903 6.32544 3.74162e-06 458.485

3 4 40 8.48371 1.86651 23 4.62254 12.3449 4.54523 2.89206e-04 290.143

4 2 60 9.21317 2.10945 23 4.84944 13.5769 4.36757 4.50464e-04 315.090

5 3 60 16.38293 1.90522 23 12.44169 20.3242 8.59899 2.43159e-08 560.296

6 4 60 11.46065 2.17805 23 6.95500 15.9663 5.26188 4.88377e-05 391.954
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Observe also that the summary is just one data frame with six rows, rather than a collection of
three data frames; and it contains a column for all reference variables, including any by variables.

Besides str and summary, there is also a confint method, which is the same as summary with
infer=c(TRUE,FALSE), and a test method (same as summary with infer=c(FALSE,TRUE), by
default). The test method may in addition be called with joint=TRUE to obtain a joint test that
all or some of the linear functions are equal to zero or some other value.

There is also an update method which may be used for changing the object’s display settings.
For example:

R> org.lsm2 <- update(org.lsm, by.vars = NULL, level = .99)

R> org.lsm2

day price2 lsmean SE df lower.CL upper.CL

2 40 6.23623 1.88711 23 0.938488 11.5340

3 40 13.40599 2.11938 23 7.456193 19.3558

4 40 8.48371 1.86651 23 3.243791 13.7236

2 60 9.21317 2.10945 23 3.291240 15.1351

3 60 16.38293 1.90522 23 11.034351 21.7315

4 60 11.46065 2.17805 23 5.346122 17.5752

Results are averaged over the levels of: store

Confidence level used: 0.99

3.3 Plots

Confidence intervals for LS means may be displayed graphically, using the plot method. For
example:

R> plot(org.lsm, by = "price2")

The resulting display is shown in Figure 1. This function requires that the lattice package be
installed. Additional graphical presentations are covered later in this vignette.

4 Contrasts and comparisons

4.1 Contrasts in general

Often, people want to do pairwise comparisons of LS means, or compute other contrasts among
them. This is the purpose of the contrast function, which uses a "ref.grid" or "lsmobj" object
as input. There are several standard contrast families such as "pairwise", "trt.vs.ctrl", and
"poly". In the following command, we request "eff" contrasts, which are differences between each
mean and the overall mean:

R> contrast(org.lsm, method = "eff")

price2 = 40:

contrast estimate SE df t.ratio p.value

2 effect -3.13908 1.41529 23 -2.218 0.0551

3 effect 4.03068 1.44275 23 2.794 0.0310

4 effect -0.89160 1.42135 23 -0.627 0.5366
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Figure 1: Confidence intervals for LS means in the oranges example.

price2 = 60:

contrast estimate SE df t.ratio p.value

2 effect -3.13908 1.41529 23 -2.218 0.0551

3 effect 4.03068 1.44275 23 2.794 0.0310

4 effect -0.89160 1.42135 23 -0.627 0.5366

Results are averaged over the levels of: store

P value adjustment: fdr method for 3 tests

Note that this preserves the by specification from before, and obtains the effects for each group. In
this example, since it is an additive model, we obtain exactly the same results in each group. This
isn’t wrong, it’s just redundant.

Another popular method is Dunnett-style contrasts, where a particular LS mean is compared
with each of the others. This is done using "trt.vs.ctrl". In the following, we obtain (again) the
LS means for days, and compare each with the average of the LS means on day 5 and 6.

R> days.lsm <- lsmeans(oranges.rg1, "day")

R> ( days_contr.lsm <- contrast(days.lsm, "trt.vs.ctrl", ref = c(5,6)) )

contrast estimate SE df t.ratio p.value

1 - avg(5,6) -7.853877 2.19424 23 -3.579 0.0058

2 - avg(5,6) -6.923486 2.12734 23 -3.255 0.0125

3 - avg(5,6) 0.246279 2.15553 23 0.114 0.9979

4 - avg(5,6) -4.676003 2.11076 23 -2.215 0.1184

Results are averaged over the levels of: store

P value adjustment: dunnettx method for 4 tests

For convenience, "trt.vs.ctrl1" and "trt.vs.ctrlk" methods are provided for use in lieu of
ref for comparing with the first and the last LS means. The "dunnettx" adjustment is a good
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approximation to the exact Dunnett P value adjustment. If the exact adjustment is desired, use
adjust = "mvt"; but this can take a lot of computing time when there are several tests.

Note that by default, lsmeans results are displayed with confidence intervals while contrast

results are displayed with t tests. One can easily override this; for example,

R> confint(contrast(days.lsm, "trt.vs.ctrlk"))

(Results not shown.)
In the above examples, a default multiplicity adjustment is determined from the contrast

method. This may be overridden by adding an adjust argument.

4.2 Pairwise comparisons

Often, users want pairwise comparisons among the LS means. These may be obtained by specifying
"pairwise" or "revpairwise" as the method argument in the call to contrast. For group labels
A, B, C, "pairwise" generates the comparisons A− B, A−C, B−C while "revpairwise" generates
B − A, C − A, C − B. As a convenience, a pairs method is provided that calls contrast with
method="pairwise":

R> pairs(org.lsm)

price2 = 40:

contrast estimate SE df t.ratio p.value

2 - 3 -7.16976 2.47970 23 -2.891 0.0216

2 - 4 -2.24748 2.44234 23 -0.920 0.6333

3 - 4 4.92228 2.49007 23 1.977 0.1406

price2 = 60:

contrast estimate SE df t.ratio p.value

2 - 3 -7.16976 2.47970 23 -2.891 0.0216

2 - 4 -2.24748 2.44234 23 -0.920 0.6333

3 - 4 4.92228 2.49007 23 1.977 0.1406

Results are averaged over the levels of: store

P value adjustment: tukey method for comparing a family of 3 estimates

There is also a cld (compact letter display) method that lists the LS means along with grouping
symbols for pairwise contrasts. It requires the multcompView package (Graves et al., 2012) to
be installed.

R> cld(days.lsm, alpha = .10)

day lsmean SE df lower.CL upper.CL .group

1 5.56442 1.76808 23 1.90686 9.22197 1

2 6.49481 1.72896 23 2.91818 10.07143 1

4 8.74229 1.73392 23 5.15540 12.32918 12

6 11.39478 1.76673 23 7.74003 15.04953 12

3 13.66457 1.75150 23 10.04131 17.28783 2

5 15.44180 1.78581 23 11.74758 19.13603 2
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Figure 2: Graphical comparisons of the LS means for days.

Results are averaged over the levels of: store

Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 6 estimates

significance level used: alpha = 0.1

Two LS means that share one or more of the same grouping symbols are not significantly different
at the stated value of alpha, after applying the multiplicity adjustment (in this case Tukey’s HSD).
By default, the LS means are ordered in this display, but this may be overridden with the argument
sort=FALSE. cld returns a "summary.ref.grid" object, not an lsmobj.

Another way to display pairwise comparisons is via the comparisons argument of plot. When
this is set to TRUE, arrows are added to the plot, with lengths set so that the amount by which they
overlap (or don’t overlap) matches as closely as possible to the amounts by which corresponding
confidence intervals for differences cover (or don’t cover) the value zero. This does not always work,
and if there are discrepancies, a message is printed. But it usually works as long as the standard
errors of differences are not too discrepant.

R> plot(days.lsm, comparisons = TRUE, alpha = .10)

Figure 2 shows the result. Note that the pairs of means having overlapping arrows are the same as
those grouped together in the cld display. However, these comparison arrows show more about the
degree of significance in the comparisons. The lowest and highest LS mean have arrows pointing
only inward, as the others are not needed. If the confidence intervals and arrows together look too
cluttered, one can add the argument intervals = FALSE, then only the arrows will be displayed.

4.3 Multiplicity adjustments—changing the family

You may have noticed that in the preceding examples where P-value adjustments were implemented,
those adjustments were made separately for each sub-table when a by variable is active. Some users
prefer that all the adjusted tests together as one family—or even combine more than one family
of tests into one family for purposes of adjustment. This may be done using the rbind method
(similar to using rbind to combine matrices.

On the flip side, perhaps we want to exclude some tests. This may be used using the operator:
simply specify the row indexes of the tests to include.
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To illustrate, consider the previously obtained org.lsm object. In pairs(org.lsm), we obtain
the same results twice (as seen above) because the model is additive. For the same reason, if
we change the by variable to "day", we’ll obtain three copies of the same comparison of the two
price2s. If we want to consider the three day comparisons and the one price2 comparison together
as one family of four tests, we can do:

R> rbind(pairs(org.lsm)[1:3], pairs(org.lsm, by = "day")[1])

contrast price2 day estimate SE df t.ratio p.value

2 - 3 40 . -7.16976 2.47970 23 -2.891 0.0292

2 - 4 40 . -2.24748 2.44234 23 -0.920 0.7585

3 - 4 40 . 4.92228 2.49007 23 1.977 0.1875

40 - 60 . 2 -2.97694 1.99466 23 -1.492 0.4056

Results are averaged over some or all of the levels of: store

P value adjustment: mvt method for 4 tests

Note that by default, the "mvt" adjustment level is used; for complicated families like this, ordinary
Tukey and Dunnett adjustments are usually not appropriate.

We arrived at this point by a circuitous path. In the additive model, the above conditional
results are the same as the marginal ones:

R> rbind(pairs(lsmeans(org.lsm, "day")), pairs(lsmeans(org.lsm, "price2")))

contrast estimate SE df t.ratio p.value

2 - 3 -7.16976 2.47970 23 -2.891 0.0292

2 - 4 -2.24748 2.44234 23 -0.920 0.7585

3 - 4 4.92228 2.49007 23 1.977 0.1875

40 - 60 -2.97694 1.99466 23 -1.492 0.4057

Results are averaged over some or all of the levels of: store, price2, day

P value adjustment: mvt method for 4 tests

5 Multivariate models

The oranges data has two response variables. Let’s try a multivariate model for predicting the
sales of the two varieties of oranges, and see what we get if we call ref.grid:

R> oranges.mlm <- lm(cbind(sales1,sales2) ~ price1 + price2 + day + store,

data = oranges)

R> ref.grid(oranges.mlm)

'ref.grid' object with variables:

price1 = 51.222

price2 = 48.556

day = 1, 2, 3, 4, 5, 6

store = 1, 2, 3, 4, 5, 6

rep.meas = multivariate response levels: sales1, sales2
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What happens is that the multivariate response is treated like an additional factor, by default named
rep.meas. In turn, it can be used to specify levels for LS means. Here we rename the multivariate
response to "variety" and obtain day means (and a compact letter display for comparisons thereof)
for each variety:

R> org.mlsm <- lsmeans(oranges.mlm, ~ day | variety, mult.name = "variety")

R> cld(org.mlsm, sort = FALSE)

variety = sales1:

day lsmean SE df lower.CL upper.CL .group

1 5.56442 1.76808 23 1.906856 9.22197 1

2 6.49481 1.72896 23 2.918183 10.07143 12

3 13.66457 1.75150 23 10.041308 17.28783 23

4 8.74229 1.73392 23 5.155403 12.32918 123

5 15.44180 1.78581 23 11.747576 19.13603 3

6 11.39478 1.76673 23 7.740031 15.04953 123

variety = sales2:

day lsmean SE df lower.CL upper.CL .group

1 7.71566 2.32649 23 2.902962 12.52836 12

2 3.97645 2.27500 23 -0.729758 8.68265 1

3 16.59781 2.30467 23 11.830240 21.36539 2

4 11.04454 2.28153 23 6.324832 15.76425 12

5 14.99079 2.34981 23 10.129837 19.85174 2

6 12.04878 2.32470 23 7.239777 16.85779 12

Results are averaged over the levels of: store

Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 6 estimates

significance level used: alpha = 0.05

6 Contrasts of contrasts (interaction contrasts)

With the preceding model, we might want to compare the two varieties on each day:

R> org.vardiff <- update(pairs(org.mlsm, by = "day"), by = NULL)

The results (not yet shown) will comprise the six sales1-sales2 differences, one for each day. The
two by specifications seems odd, but the one in pairs specifies doing a separate comparison for
each day, and the one in update asks that we convert it to one table with six rows, rather than 6
tables with one row each. Now, let’s compare these differences to see if they vary from day to day.

R> cld(org.vardiff)

contrast day estimate SE df t.ratio p.value .group

sales1 - sales2 3 -2.933243 2.69411 23 -1.089 0.2875 1

sales1 - sales2 4 -2.302251 2.66706 23 -0.863 0.3969 1

sales1 - sales2 1 -2.151248 2.71961 23 -0.791 0.4370 1

sales1 - sales2 6 -0.654002 2.71752 23 -0.241 0.8120 1
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sales1 - sales2 5 0.451016 2.74688 23 0.164 0.8710 1

sales1 - sales2 2 2.518361 2.65943 23 0.947 0.3535 1

Results are averaged over the levels of: store

P value adjustment: tukey method for comparing a family of 6 estimates

significance level used: alpha = 0.05

There is little evidence of variety differences, nor that these differences vary from day to day.
A newer feature of the contrast function is the optional interaction argument, which may

be used to specify interaction contrasts by naming which contrast to use for each variable (in the
order of appearance in the grid). In a similar example to the above, suppose we want to compare
each polynomial contrast in day between the two varieties:

R> contrast(org.mlsm, interaction = c("poly", "pairwise"))

day_poly variety_pairwise estimate SE df t.ratio p.value

linear sales1 - sales2 1.91519 22.9766 23 0.083 0.9343

quadratic sales1 - sales2 3.94635 24.7950 23 0.159 0.8749

cubic sales1 - sales2 19.43368 36.0788 23 0.539 0.5953

quartic sales1 - sales2 -22.18437 14.1180 23 -1.571 0.1298

degree 5 sales1 - sales2 18.14389 43.6461 23 0.416 0.6815

Results are averaged over the levels of: store

7 Interfacing with multcomp

The multcomp package (Hothorn et al., 2013) supports more options for simultaneous inference
than are available in lsmeans. Its glht (general linear hypothesis testing) function and associated
"glht" class are similar in some ways to lsmeans and "lsmobj" objects, respectively. So lsmeans
provides an as.glht function to do the conversion.

To illustrate, let us convert the days_contr.lsm object (produced earlier) to a glht object,
and use it to obtain adjusted P values under Westfall’s adjustment procedure (not available in
lsmeans):

R> library("multcomp")

R> days.glht <- as.glht(days_contr.lsm)

R> summary(days.glht, test = adjusted("Westfall"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

1 - avg(5,6) == 0 -7.854 2.194 -3.58 0.0062

2 - avg(5,6) == 0 -6.923 2.127 -3.25 0.0099

3 - avg(5,6) == 0 0.246 2.156 0.11 0.9100

4 - avg(5,6) == 0 -4.676 2.111 -2.22 0.0697

(Adjusted p values reported -- Westfall method)

In addition, lsmeans provides an lsm function (or its alias, pmm) that may be called from within a
call to glht. Thus, another way to obtain the same glht object is to use
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R> days.glht1 <- glht(oranges.lm1,

lsm("day", contr = "trt.vs.ctrl", ref = c(5,6)))

By the way, the following two statements will produce the same results:

R> summary(days_contr.lsm, adjust = "mvt")

R> summary(days.glht)

That is, the "mvt" adjust method in lsmeans is the same as the default single-step P value adjust-
ment in multcomp.

One additional detail: If there is a by variable in effect, glht or as.glht returns a list of
glht objects—one for each by level. There are courtesy coef, confint, plot, summary, and vcov

methods for this "glht.list" class to make things a bit more user-friendly. Recall the earlier
example result org.lsm, which contains information for LS means for three days at each of two
values of price2. Suppose we are interested in pairwise comparisons of these LS means, by price2.
If we call

R> summary(as.glht(pairs(org.lsm)))

(results not displayed) we will obtain two glht objects with three contrasts each, so that the results
shown will incorporate multiplicity adjustments for each family of three contrasts. If, on the other
hand, we want to consider those six contrasts as one family, use

R> summary(as.glht(pairs(org.lsm), by = NULL))

. . . and note (look carefully at the parentheses) that this is not the same as

R> summary(as.glht(pairs(org.lsm, by = NULL)))

which removes the by grouping before the pairwise comparisons are generated, thus yielding (6
2) = 15

contrasts instead of just six.

8 A new example: Oat yields

Orange-sales illustrations are probably getting tiresome. To illustrate some new features, let’s turn
to a new example. The Oats dataset in the nlme package (Pinheiro et al., 2013) has the results of a
split-plot experiment discussed in Yates (1935). The experiment was conducted on six blocks (factor
Block). Each block was divided into three plots, which were randomized to three varieties (factor
Variety) of oats. Each plot was divided into subplots and randomized to four levels of nitrogen
(variable nitro). The response, yield, was measured once on each subplot after a suitable growing
period.

We will fit a model using the lmer function in the lme4 package (Bates et al., 2013). This
will be a mixed model with random intercepts for Block and Block:Variety (which identifies the
plots). A logarithmic transformation is applied to the response variable (mostly for illustration
purposes, though it does produce a good fit to the data). Note that nitro is stored as a numeric
variable, but we want to consider it as a factor in this initial model.

R> data("Oats", package = "nlme")

R> library("lme4")

R> Oats.lmer <- lmer(log(yield) ~ Variety*factor(nitro) + (1|Block/Variety),

data = Oats)

R> anova(Oats.lmer)
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Analysis of Variance Table

Df Sum Sq Mean Sq F value

Variety 2 0.0750 0.0375 2.008

factor(nitro) 3 2.1350 0.7117 38.110

Variety:factor(nitro) 6 0.0451 0.0075 0.402

Apparently, the interaction is not needed. But perhaps we can further simplify the model by using
only a linear or quadratic trend in nitro. We can find out by looking at polynomial contrasts:

R> contrast(lsmeans(Oats.lmer, "nitro"), "poly")

NOTE: Results may be misleading due to involvement in interactions

contrast estimate SE df t.ratio p.value

linear 1.50565129 0.1440469 45 10.453 <.0001

quadratic -0.14510997 0.0644197 45 -2.253 0.0292

cubic 0.00273198 0.1440469 45 0.019 0.9850

Results are averaged over the levels of: Variety

Results are given on the log (not the response) scale.

(A message is issued when we average over predictors that interact with those that delineate the
LS means. In this case, it is not a serious problem because the interaction is weak.) Both the linear
and quadratic contrasts are pretty significant. All this suggests fitting an additive model where
nitro is included as a numeric predictor with a quadratic trend.

R> Oats.lmer2 <- lmer(log(yield) ~ Variety + poly(nitro,2)

+ (1|Block/Variety), data = Oats)

Remember that nitro is now used as a quantitative predictor. But for comparing with the previous
model, we want to see predictions at the four unique nitro values rather than at the average of
nitro. This may be done using at as illustrated earlier, or a shortcut is to specify cov.reduce as
FALSE, which tells ref.grid to use all the unique values of numeric predictors.

R> Oats.lsm2 <- lsmeans(Oats.lmer2, ~ nitro | Variety, cov.reduce = FALSE)

The results are displayed as an export table (see Section 9.1) in Table 1, page 16. These LS means
follow the same quadratic trend for each variety, but with different intercepts.2

Fractional degrees of freedom are displayed in these results. These are obtained by default
using the Satterthwaite method, using routines in the lmerTest package (Kuznetsova et al., 2016).
Adding the argument mode = "kenward-roger" to the lsmeans call will cause the degrees of free-
dom to be computed using instead the Kenward-Roger (K-R) method from the pbkrtest package
(Halekoh and Højsgaard, 2013), which also implements, as a side-effect, a bias adjustment in the
estimated covariances (and hence standard errors). The K-R method is probably preferable, but it
requires a lot more computation, and hence is no longer the default. A third option is to specify
mode = "asymptotic", for which all the degrees of freedom are set to NA—producing z tests rather
than t tests. You may change the default via lsm.options(lmer.df = "desired default" ).
These mode settings are partially matched, so mode = "k" is actually good enough.

2This is the promised example where our generalization of Searle et al. (1980)’s definition of LS means makes
sense. Suppose we want to compare the LS means for Variety with those in the original model Oats.lmer where
nitro was a factor, we want to average equally over the four nitro levels, even though nitro is a covariate in this
second model.
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nitro lsmean SE df lower.CL upper.CL

Variety = Golden Rain
0.0000 4.3546 0.0770 11.77 4.1864 4.5228
0.2000 4.5777 0.0745 10.34 4.4124 4.7430
0.4000 4.7283 0.0745 10.34 4.5629 4.8936
0.6000 4.8063 0.0770 11.77 4.6381 4.9745

Variety = Marvellous
0.0000 4.4122 0.0770 11.77 4.2440 4.5804
0.2000 4.6353 0.0745 10.34 4.4700 4.8007
0.4000 4.7859 0.0745 10.34 4.6206 4.9513
0.6000 4.8639 0.0770 11.77 4.6957 5.0321

Variety = Victory
0.0000 4.2751 0.0770 11.77 4.1069 4.4434
0.2000 4.4983 0.0745 10.34 4.3329 4.6636
0.4000 4.6488 0.0745 10.34 4.4835 4.8142
0.6000 4.7268 0.0770 11.77 4.5586 4.8951

Degrees-of-freedom method: satterthwaite

Results are given on the log (not the response) scale.

Confidence level used: 0.95

Table 1: Example using xtable

9 Additional display methods

9.1 Export tables

The lsmeans package provides an xtable method (Dahl, 2016) that works with lsmobj, ref.grid,
and summary.ref.grid objects. (It actually uses the xtableList interface; see the documentation
for details.) This is quite useful if you want a nicely formatted table, especially using Sweave or
knitr. To illustrate, we display the Oats.lsm2 object just created.

R> library("xtable")

R> xtbl <- xtable(Oats.lsm2, caption = "Example using \\texttt{xtable}",

label = "xtable:example")

R> print(xtbl, table.placement = "t")

R> cat("See Table~\\ref{xtable:example}.\n")

See Table 1.

9.2 Displaying LS means graphically

We have already seen the use of the plot function to display confidence intervals and/or comparison
arrows. The lsmeans package also includes a function lsmip that displays predictions in an
interaction-plot-like manner. It uses a formula of the form

curve.factors ~ x.factors | by.factors

This function also requires the lattice package. In the above formula, curve.factors specifies
factor(s) used to delineate one displayed curve from another (i.e., groups in lattice’s parlance).

16



Levels of nitro

O
bs

er
ve

d 
lo

g(
yi

el
d)

4.3

4.4

4.5

4.6

4.7

4.8

0 0.2 0.4 0.6

●

●

●

●

Variety
Golden Rain
Marvellous
Victory

●

Levels of nitro

P
re

di
ct

ed
 lo

g(
yi

el
d)

4.3

4.4

4.5

4.6

4.7

4.8

0 0.2 0.4 0.6

●

●

●

●

Variety
Golden Rain
Marvellous
Victory

●

Figure 3: Interaction plots for the cell means and the fitted model, Oats example.

x.factors are those whose levels are plotted on the horizontal axis. And by.factors, if present,
break the plots into panels.

To illustrate, consider the first model we fitted to the Oats data. Let’s do a graphical comparison
of the two models we have fitted to the Oats data.

R> lsmip(Oats.lmer, Variety ~ nitro, ylab = "Observed log(yield)")

R> lsmip(Oats.lsm2, Variety ~ nitro, ylab = "Predicted log(yield)")

The plots are shown in Figure 3. Note that the first model fits the cell means perfectly, so its plot
is truly an interaction plot of the data. The other displays the parabolic trends we fitted in the
revised model.

10 Transformations

10.1 Automatic support for transformations

When a transformation or link function is used in fitting a model, ref.grid (also called by lsmeans)
stores that information in the returned object, as seen in this example:

R> str(Oats.lsm2)

'lsmobj' object with variables:

nitro = 0.0, 0.2, 0.4, 0.6

Variety = Golden Rain, Marvellous, Victory

Transformation: "log"

This allows us to conveniently unravel the transformation, via the type argument in summary or
related functions such as lsmip and predict. Here are the predicted yields for (as opposed to
predicted log yields) for the polynomial model:

R> summary(Oats.lsm2, type = "response")
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Variety = Golden Rain:

nitro response SE df lower.CL upper.CL

0.0 77.8340 5.99577 11.77 65.7834 92.0921

0.2 97.2902 7.25165 10.34 82.4632 114.7831

0.4 113.0989 8.42998 10.34 95.8627 133.4343

0.6 122.2751 9.41920 11.77 103.3439 144.6742

Variety = Marvellous:

nitro response SE df lower.CL upper.CL

0.0 82.4529 6.35158 11.77 69.6871 97.5571

0.2 103.0637 7.68199 10.34 87.3568 121.5946

0.4 119.8106 8.93024 10.34 101.5515 141.3527

0.6 129.5313 9.97816 11.77 109.4766 153.2596

Variety = Victory:

nitro response SE df lower.CL upper.CL

0.0 71.8907 5.53794 11.77 60.7602 85.0601

0.2 89.8612 6.69793 10.34 76.1664 106.0184

0.4 104.4629 7.78628 10.34 88.5428 123.2454

0.6 112.9383 8.69996 11.77 95.4527 133.6271

Degrees-of-freedom method: satterthwaite

Confidence level used: 0.95

Intervals are back-transformed from the log scale

It is important to realize that the statistical inferences are all done before reversing the trans-
formation. Thus, t ratios are based on the linear predictors and will differ from those computed
using the printed estimates and standard errors. Likewise, confidence intervals are computed on
the linear-predictor scale, then the endpoints are back-transformed.

This kind of automatic support is available for most popular response transformations such as
log, log10, and even transformations like asin(sqrt()) and sqrt(y)+sqrt(y+1). The Details
section for help("make.tran") provides a complete list. It is also possible to support custom
transformations via the tran argument in the update method—see its help page.

10.2 Using make.tran

The make.tran function provides support for yet more popular types of transformations, particu-
larly those that require specifying one or more parameters. Examples are general power transfor-
mations, Box-Cox transformations, and transformations with a shifted origin such as log(y + a).
Details may of course be found via help("make.tran"). The function returns a list of functions,
compatible with what is returned by make.link in the stats package. The latter is intended pri-
marily for use with generalized linear models, and make.tran extends such capabilities to other
response transformations.

There are two basic ways to use make.tran: retrospectively on an existing model, and prospec-
tively in fitting a new model. Here is an example of retrospective use, where the log(y + 5)
transformation was used. This transformation is not auto-detected.

R> Oats.log1 <- lmer(log(yield + 5) ~ Variety + factor(nitro)

+ (1|Block/Variety), data = Oats)
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R> ( Oats.rg1 <- update(ref.grid(Oats.log1),

tran = make.tran("genlog", 5)) )

'ref.grid' object with variables:

Variety = Golden Rain, Marvellous, Victory

nitro = 0.0, 0.2, 0.4, 0.6

Transformation: "log(mu + 5)"

Here, we created a reference grid for the model, then updated it with its tran component set to the
result of make.tran for a generalized log transformation with parameter 5. This updated reference
grid has all the information needed to back-transform the results to the original yield scale:

R> round(predict(Oats.rg1, type = "response"), 1)

[1] 77.9 82.6 72.0 97.4 103.2 90.0 113.1 119.7 104.6 122.3 129.5 113.1

Using make.tran prospectively makes use of the fact that the transformation itself is included
in the returned list as a function named linkfun (somewhat oddly named due to the fact that
make.tran mimics the functionality of make.link). When a model is fitted with linkfun as
the transformation, its enclosing environment is automatically used to obtain the transformation
definitions. For illustration, consider a rather far-fetched transformation:

R> my.tran <- make.tran("boxcox", c(.567, 10))

R> my.tran$linkfun(10:15)

[1] -1.76367 0.00000 0.84910 1.52443 2.10699 2.62905

This specifies a Box-Cox transformation with the origin shifted to 10:3

h(y) =
(y− 10).567 − 1

1− .567

If we use my.tran as an enclosing environment for fitting the model, the transformation is saved
automatically:

R> Oats.bc <- with(my.tran, lmer(linkfun(yield) ~ Variety + factor(nitro)

+ (1|Block/Variety), data = Oats))

R> ( rg.bc <- ref.grid(Oats.bc) )

'ref.grid' object with variables:

Variety = Golden Rain, Marvellous, Victory

nitro = 0.0, 0.2, 0.4, 0.6

Transformation: "Box-Cox (lambda = 0.567) with origin at 10"

R> round(predict(rg.bc, type = "response"), 1)

[1] 78.9 83.8 72.5 98.4 103.9 91.2 113.9 119.9 106.2 123.1 129.3 115.1

3To obtain an ordinary Box-Cox transformation, provide just one parameter: make.tran("boxcox", .567).
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10.3 Using regrid

The regrid function may be used to, in essence, give a new beginning to an existing reference grid
(or lsmobj), most redefined on the response scale (i.e., back-transformed). Consider the preceding
Box-Cox example, after applying regrid:

R> rg.bc.regrid <- regrid(rg.bc)

By default, the estimates are back-transformed to the response scale. In a regrid result, the linfct
slot (linear functions) become the identity matrix, and the bhat slot (regression coefficients) become
the predictions at each grid point:

R> round(rg.bc.regrid@bhat, 1)

[1] 78.9 83.8 72.5 98.4 103.9 91.2 113.9 119.9 106.2 123.1 129.3 115.1

which matches the predictions shown previously.
The interesting thing is what happens if we subsequently obtain LS means. Compare these

results:

R> summary(lsmeans(rg.bc, "Variety"), type = "response")

Variety response SE df lower.CL upper.CL

Golden Rain 102.8965 7.59415 9.07 86.4283 120.738

Marvellous 108.5580 7.79119 9.07 91.6389 126.839

Victory 95.5741 7.32891 9.07 79.7132 112.823

Results are averaged over the levels of: nitro

Degrees-of-freedom method: satterthwaite

Confidence level used: 0.95

Intervals are back-transformed from the Box-Cox (lambda = 0.567) with origin at 10 scale

R> lsmeans(rg.bc.regrid, "Variety")

Variety response SE df lower.CL upper.CL

Golden Rain 103.5782 7.58751 11.34 86.9391 120.217

Marvellous 109.2342 7.78483 11.34 92.1623 126.306

Victory 96.2634 7.32187 11.34 80.2068 112.320

Results are averaged over the levels of: nitro

Degrees-of-freedom method: satterthwaite

Confidence level used: 0.95

Why are the answers somewhat different? Recall that LS means are obtained via equally-weighted
averages of predictions. In the first lsmeans call, the predictions, on the Box-Cox scale, are averaged
together and then back-transformed to the response scale; whereas in the second lsmeans call, the
predictions being averaged were already on the response scale. (Hence, the results are the usual
arithmetic means of the predictions on the grid.) Since the Box-Cox transformation is nonlinear,
averaging then back-transforming is not the same as back-transforming then averaging.

Even the degrees of freedom (d.f.) differ in the two results, because degrees-of-freedom calcula-
tions take place on the linear-predictor scale. Once results are back-transformed, regrid “freezes”
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the calculated degrees of freedom for each prediction. Subsequently, a containment method is used
whereby the returned d.f. is the minimum d.f. of predictions involved in each LS mean.

Some users prefer averaging the predictions on the response scale as they are then the arith-
mentic means; and now you see that the way to make that happen is through the regrid function.

10.4 Reverse-engineering a log transformation

When a response has been log-transformed, then there are useful special properties of back-
transformed summaries:

� LS means, when back-transformed to the response scale, are actually the geometric means of
the response-scale predictions.

� A difference of two LS means on the log scale, after back-transforming, becomes an estimate
of the ratio of the two geometric means. Such comparisons via ratios can be quite useful for
positive responses.

The regrid function provides a "log" option that recomputes the reference grid as if the
response transformation had been the natural logarithm. We can then take advantage of the above
special properties of log-transformed responses. The only proviso is that, on the response scale, all
of the reference-grid predictions must be positive.

To illustrate, we revisit the above Box-Cox model once again, and regrid it on the log scale:

R> rg.log <- regrid(rg.bc, "log")

R> lsm.log <- lsmeans(rg.log, "Variety")

R> summary(lsm.log, type = "response")

Variety response SE df lower.CL upper.CL

Golden Rain 102.1431 7.59228 11.34 86.7796 120.226

Marvellous 107.8026 7.79008 11.34 92.0040 126.314

Victory 94.8242 7.32582 11.34 80.0462 112.331

Results are averaged over the levels of: nitro

Degrees-of-freedom method: satterthwaite

Confidence level used: 0.95

Intervals are back-transformed from the log scale

R> summary(pairs(lsm.log), type = "response")

contrast response.ratio SE df t.ratio p.value

Golden Rain - Marvellous 0.947502 0.0642564 11.34 -0.795 0.7133

Golden Rain - Victory 1.077183 0.0755633 11.34 1.060 0.5563

Marvellous - Victory 1.136867 0.0787699 11.34 1.851 0.1974

Results are averaged over the levels of: nitro

P value adjustment: tukey method for comparing a family of 3 estimates

Tests are performed on the log scale

The LS means shown are the geometric means of the predictions, as opposed to the arithmetic
means obtained above from rg.bc.regrid. And the pairwise comparisons come out as ratios of
these.
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10.5 The transform argument

For convenience, the user may use a transform argument to re-grid as part of a ref.grid or
lsmeans call. For example, lsmeans(Oats.bc, "Variety", transform = "response") is equiv-
alent to lsmeans(rg.bc.regrid, "Variety") but without needing the two code steps previously
used to produce rg.bc and rg.bc.regrid.

11 More on tests

The default settings for test yield traditional two-tailed t (or z) tests of significance against zero.
So if θ(j) is the jth parameter (e.g., LS mean or contrast) being estimated, we are testing the null
hypothesis H0 : θ(j) = 0 versus the alternative H1 : θ(j) 6= 0. We can, however, specify different
types of tests in the test or summary functions.

11.1 Nonzero null values

If we wish to use nonzero null values, i,e., test H0 : θ(j) = θ
(j)
0 , use test or summary with the null

argument set to the desired θ
(j)
0 values. For example, in the Oat-yield example, suppose we want to

test each of the Variety yields against 100 (actually log 100 since the response was transformed):

R> Oats.Vlsm = lsmeans(Oats.lmer2, "Variety")

R> test(Oats.Vlsm, null = log(100), type = "response")

Variety response SE df null t.ratio p.value

Golden Rain 105.8528 7.95052 10.65 100 0.757 0.4653

Marvellous 112.1345 8.42233 10.65 100 1.525 0.1564

Victory 97.7701 7.34343 10.65 100 -0.300 0.7698

Degrees-of-freedom method: satterthwaite

Tests are performed on the log scale

Note that null should always be given on the linear-predictor scale (in this case log yield), even
when specifying type="response". We could have specified different null values for each hypothesis
by providing a vector of three numbers.

11.2 Equivalence tests

The preceding results say that none of the variety means differs significantly from 100, after trans-
forming. But this is not the same as saying that we have evidence that the means are close to 100
(that is, absence of proof is not proof of absence). To make a strong statement that an effect is
small, we should use an equivalence test, which more-or-less turns the hypotheses around:

H0 : |θ(j) − θ
(j)
0 | ≥ δ versus H1 : |θ(j) − θ

(j)
0 | < δ

where δ is a specified threshold of equivalence. A common test procedure is the two one-sided test
(TOST) method (Schuirmann, 1987), whereby we obtain equivalence only if we can establish both

that θ(j) − θ
(j)
0 > −δ and that θ(j) − θ

(j)
0 < δ. In lsmeans, we do this by pre-identifying the less

significant of these two tests:

t =
|θ̂(j) − θ

(j)
0 | − δ

SE(θ̂(j))
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and the P value is the left-tail probability of this quantity from the central t distribution.
In test or summary, an equivalence test is requested by specifying a nonzero delta argument,

which in turn is used as the threshold δ. In the Oat-yield example, the following results are obtained
using a threshold of δ = 0.20:

R> test(Oats.Vlsm, null = log(100), delta = 0.20, type = "r")

Variety response SE df null t.ratio p.value

Golden Rain 105.8528 7.95052 10.65 100 -1.905 0.0420

Marvellous 112.1345 8.42233 10.65 100 -1.138 0.1400

Victory 97.7701 7.34343 10.65 100 -2.363 0.0192

Degrees-of-freedom method: satterthwaite

Statistics are tests of equivalence with a threshold of 0.2

P values are left-tailed

Tests are performed on the log scale

So two of the three Variety means are established as being within .20 of log 100. The natural
log scale has the special property that small increments on the log scale translate to approximate
percentage differences of the same size. That is, a threshold of .20 corresponds to about a 20%
difference: log 80− log 100 = log .8 ≈ −.223, and log 120− log 100 = log 1.2 ≈ .182.

11.3 One-sided tests, noninferiority, nonsuperiority

The side argument is also available to specify one-sided tests. A right-tailed alternative may be
requested using side partially matching one of "+", "right", ">", +1, 1, "superiority", or (see
later) "noninferiority". Similarly, a left-tailed alternative may be specified using side equal to
"-", "left", "<", -1, "inferiority", or "nonsuperiority". (And for completeness, a two-sided
alternative is specified using 0, 2, "!=", "both", "two-sided", "equivalence", or "=".) In the
following example, we test to see if either Golden Rain or Marvellous has better yield than Victory:

R> test(contrast(Oats.Vlsm, "trt.vs.ctrlk"), side = ">")

contrast estimate SE df t.ratio p.value

Golden Rain - Victory 0.0794312 0.0686844 10 1.156 0.2556

Marvellous - Victory 0.1370802 0.0686844 10 1.996 0.0725

Results are given on the log (not the response) scale.

P value adjustment: sidak method for 2 tests

P values are right-tailed

The one-sided version of an equivalence test is called a noninferiority or nonsuperiority test. It is
obtained by specifying both side and a nonzero delta. For example, to test whether Victory is as
good as the other two within a 25% threshold, use

R> test(contrast(Oats.Vlsm, "trt.vs.ctrlk"), side = "nonsup", delta = .25)

contrast estimate SE df t.ratio p.value

Golden Rain - Victory 0.0794312 0.0686844 10 -2.483 0.0321

Marvellous - Victory 0.1370802 0.0686844 10 -1.644 0.1269
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Figure 4: Growth curves of chicks, dataset ChickWeight.

Results are given on the log (not the response) scale.

P value adjustment: sidak method for 2 tests

Statistics are tests of nonsuperiority with a threshold of 0.25

P values are left-tailed

We find strong evidence that, with the stated threshold of .25, Golden Rain is nonsuperior to
Victory (so that Victory is noninferior to Golden Rain); but not strong evidence that Victory is
noninferior to Marvellous.

12 Trends

The lsmeans package provides a function lstrends for estimating and comparing the slopes of
fitted lines (or curves). To illustrate, consider the built-in R dataset ChickWeight which has data
on the growths of newly hatched chicks under four different diets. The following code produces the
display in Figure 4.

R> require("lattice")

R> xyplot(weight ~ Time | Diet, groups = ~ Chick, data = ChickWeight,

type = "o", layout=c(4, 1))

Let us fit a model to these data using random slopes for each chick and allowing for a different
average slope for each diet (a square-root transformation straightens-out the curves somewhat):

R> Chick.lmer <- lmer(sqrt(weight) ~ Diet * Time + (0 + Time | Chick),

data = ChickWeight)

We can then call lstrends (or, its anti-SAS alias, pmtrends) to estimate and compare the average
slopes for each diet.

R> Chick.lst <- lstrends (Chick.lmer, ~ Diet, var = "Time")
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Now, let’s summarize the estimated trends and pairwise comparisons of these slopes using a compact
letter display.

R> cld (Chick.lst)

Diet Time.trend SE df lower.CL upper.CL .group

1 0.309277 0.0239921 47.63 0.261028 0.357526 1

2 0.392980 0.0330126 46.20 0.326537 0.459423 12

4 0.431702 0.0330498 46.41 0.365192 0.498213 2

3 0.490856 0.0330126 46.20 0.424413 0.557299 2

Trends are based on the sqrt (transformed) scale

Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 4 estimates

significance level used: alpha = 0.05

According to the Tukey HSD comparisons (with default significance level of .05), there are two
groupings of slopes: Diet 1’s mean slope is significantly less than 3 or 4’s, Diet 2’s slope is not
distinguished from any other.

Because of the response transformation, the slopes we just computed are for trends on the
square-root-weight scale. If you want the trends on the actual weight scale after back-transforming,
that is possible via the transform argument:

R> lstrends(Chick.lmer, ~ Diet | Time, var = "Time",

transform = "response", at = list(Time = c(5, 15)))

Time = 5:

Diet Time.trend SE df lower.CL upper.CL

1 4.89475 0.379708 47.63 4.13114 5.65835

2 6.52867 0.548445 46.20 5.42484 7.63251

3 8.35752 0.562086 46.20 7.22623 9.48881

4 7.52962 0.576443 46.41 6.36957 8.68966

Time = 15:

Diet Time.trend SE df lower.CL upper.CL

1 6.80779 0.528112 47.63 5.74574 7.86984

2 9.61734 0.807911 46.20 7.99129 11.24339

3 13.17630 0.886174 46.20 11.39273 14.95987

4 11.25696 0.861797 46.41 9.52266 12.99126

Trends are obtained after back-transforming from the sqrt scale

Confidence level used: 0.95

We specified two different Time values to emphasize that after back-transforming, the slopes are
different at each Time, whereas (by the model specification) the slopes don’t depend on Time when
we leave it on the square-root scale.

Note: lstrends computes a difference quotient based on two slightly different reference grids.
Thus, if it it must be called with a model object, not a ref.grid object.
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13 User preferences

lsmeans sets certain defaults for displaying results—for example, using .95 for the confidence
coefficient, and showing intervals for lsmeans output and test statistics for contrast results. As
discussed before, one may use arguments in summary to change what is displayed, or update to
change the defaults for a given object. But suppose you want different defaults to begin with.
These can be set using the lsm.options statement. For example:

R> lsm.options(ref.grid = list(level = .90),

lsmeans = list(),

contrast = list(infer = c(TRUE, TRUE)))

This requests that any object created by ref.grid be set to have confidence levels default to 90%,
and that contrast results are displayed with both intervals and tests. No new options are set for
lsmeans results, and the lsmeans part could have been omitted. These options are stored with
objects created by ref.grid, lsmeans, and contrast. For example, even though no new defaults
are set for lsmeans, future calls to lsmeans on a model object will be displayed with 90% confidence
intervals, because lsmeans calls ref.grid. However, calling lsmeans on an existing "ref.grid"

object will inherit that object’s setting.
Certain other options are available; for example, the "estble.tol" option sets the tolerance

for determining estimability of linear contrasts. To see its current value:

R> get.lsm.option("estble.tol")

[1] 1e-08

Defaults for this and some other parameters are saved in defaults.lsm.

14 Two-sided formulas

In its original design, the only way to obtain contrasts and comparisons in lsmeans was to specify
a two-sided formula, e.g., pairwise ~ treatment, in the lsmeans call. The result is then a list of
lsmobj objects (class "lsm.list"). In its newer versions, lsmeans offers a richer family of objects
that can be re-used, and dealing with a list of objects can be awkward or confusing, so its continued
use is not encouraged. Nonetheless, it is still available for backward compatibility.

Here is an example where, with one command, we obtain both the LS means and pairwise
comparisons for Variety in the model Oats.lmer2:

R> lsmeans(Oats.lmer2, pairwise ~ Variety)

$lsmeans

Variety lsmean SE df lower.CL upper.CL

Golden Rain 4.66205 0.0751092 10.65 4.52676 4.79734

Marvellous 4.71970 0.0751092 10.65 4.58441 4.85499

Victory 4.58262 0.0751092 10.65 4.44733 4.71791

Degrees-of-freedom method: satterthwaite

Results are given on the log (not the response) scale.

Confidence level used: 0.9

$contrasts

contrast estimate SE df lower.CL upper.CL t.ratio p.value

26



Golden Rain - Marvellous -0.0576490 0.0686844 10 -0.2164788 0.101181 -0.839 0.6883

Golden Rain - Victory 0.0794312 0.0686844 10 -0.0793986 0.238261 1.156 0.5036

Marvellous - Victory 0.1370802 0.0686844 10 -0.0217496 0.295910 1.996 0.1636

Results are given on the log (not the response) scale.

Confidence level used: 0.9

Conf-level adjustment: tukey method for comparing a family of 3 estimates

P value adjustment: tukey method for comparing a family of 3 estimates

This example also illustrates the effect of the preceding lsm.options settings. Let us now
return to the default display for contrast results.

R> lsm.options(ref.grid = NULL, contrast = NULL)

15 Messy data

To illustrate some more lsmeans capabilities, consider the dataset named nutrition that is pro-
vided with the lsmeans package. These data come from Milliken and Johnson (1992), and contain
the results of an observational study on nutrition education. Low-income mothers are classified
by race, age category, and whether or not they received food stamps (the group factor); and
the response variable is a gain score (post minus pre scores) after completing a nutrition training
program.

Consider the model that includes all main effects and two-way interactions. A Type-II (hierar-
chical) analysis-of-variance table is also shown.

R> nutr.lm <- lm(gain ~ (age + group + race)^2, data = nutrition)

R> library("car")

R> Anova(nutr.lm)

Anova Table (Type II tests)

Response: gain

Sum Sq Df F value Pr(>F)

age 82.4 3 0.961 0.414

group 658.1 1 23.044 6.1e-06

race 11.2 2 0.196 0.823

age:group 91.6 3 1.069 0.366

age:race 87.3 3 1.019 0.388

group:race 113.7 2 1.991 0.142

Residuals 2627.5 92

One main effect (group) is quite significant, and there is possibly an interaction with race. Let us
look at the group by race LS means:

R> lsmip(nutr.lm, race ~ age | group)

R> lsmeans(nutr.lm, ~ group*race)

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 4.70826 2.36812 92 0.00497136 9.41154

NoAid Black -2.19040 2.49058 92 -7.13689810 2.75610
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Figure 5: Predictions for the nutrition data

FoodStamps Hispanic NA NA NA NA NA

NoAid Hispanic NA NA NA NA NA

FoodStamps White 3.60768 1.15562 92 1.31252147 5.90284

NoAid White 2.25634 2.38927 92 -2.48896668 7.00164

Results are averaged over the levels of: age

Confidence level used: 0.95

Figure 5 shows the predictions from this model. One thing the output illustrates is that lsmeans
incorporates an estimability check, and returns a missing value when a prediction cannot be made
uniquely. In this example, we have very few Hispanic mothers in the dataset, resulting in empty
cells. This creates a rank deficiency in the fitted model, and some predictors are thrown out.

We can avoid non-estimable cases by using at to restrict the reference levels to a smaller set.
A useful summary of the results might be obtained by narrowing the scope of the reference levels
to two races and the two middle age groups, where most of the data lie. However, always keep in
mind that whenever we change the reference grid, we also change the definition of the LS means.
Moreover, it may be more appropriate to average the two ages using weights proportional to their
frequencies in the data set. The simplest way to do this is to add a weights argument.4 With
those ideas in mind, here are the LS means and comparisons within rows and columns:

R> nutr.lsm <- lsmeans(nutr.lm, ~ group * race, weights = "proportional",

at = list(age = c("2","3"), race = c("Black","White")))

So here are the results

R> nutr.lsm

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 8.275710 2.917880 92 2.48055 14.070871

4 It may also be done by specifying a custom function in the fac.reduce argument, but for simple weighting,
weights is simpler.
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NoAid Black -2.858277 1.678104 92 -6.19114 0.474582

FoodStamps White 5.270305 0.868032 92 3.54632 6.994292

NoAid White -0.316369 1.010292 92 -2.32290 1.690158

Results are averaged over the levels of: age

Confidence level used: 0.95

R> summary(pairs(nutr.lsm, by = "race"), by = NULL)

contrast race estimate SE df t.ratio p.value

FoodStamps - NoAid Black 11.13399 3.55123 92 3.135 0.0023

FoodStamps - NoAid White 5.58667 1.33198 92 4.194 0.0001

Results are averaged over the levels of: age

R> summary(pairs(nutr.lsm, by = "group"), by = NULL)

contrast group estimate SE df t.ratio p.value

Black - White FoodStamps 3.00540 3.01639 92 0.996 0.3217

Black - White NoAid -2.54191 1.95876 92 -1.298 0.1976

Results are averaged over the levels of: age

The general conclusion from these analyses is that for age groups 2 and 3, the expected gains
from the training are higher among families receiving food stamps. Note that this analysis is
somewhat different than the results we would obtain by subsetting the data before analysis, as we
are borrowing information from the other observations in estimating and testing these LS means.

15.1 More on weighting

The weights argument can be a vector of numerical weights (it has to be of the right length), or
one of four text values: "equal" (weight the predictions equally when averaging them, the default),
"proportional" (weight them proportionally to the observed frequencies of the factor combinations
being averaged over), "outer" (weight according to the outer products of the one-factor marginal
counts), or "cells" (weight each mean differently, according to the frequencies of the predictions
being averaged). Figure 6 shows the LS means for race using the four different weighting schemes.
(Note: If the model itself has weights, then the total weights are used instead of counts.)

Note there are four different sets of answers. The "equal" weighting is self-explanatory. But
what’s the distinction between "proportional" and "outer"? To clarify, consider:

R> temp = lsmeans(nutr.lm, c("group","race"), weights = "prop")

R> lsmeans(temp, "race", weights = "prop")

race lsmean SE df lower.CL upper.CL

Black 2.54667 1.431362 92 -0.296136 5.38948

Hispanic NA NA NA NA NA

White 3.14294 0.749415 92 1.654536 4.63134

Results are averaged over the levels of: age, group

Confidence level used: 0.95
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R> lsmeans(nutr.lm, "race", weights = "equal")

race lsmean SE df lower.CL upper.CL

Black 1.25893 1.64600 92 -2.010175 4.52803

Hispanic NA NA NA NA NA

White 2.93201 1.34661 92 0.257519 5.60650

Results are averaged over the levels of: age, group

Confidence level used: 0.95

R> lsmeans(nutr.lm, "race", weights = "prop")

race lsmean SE df lower.CL upper.CL

Black 1.92655 1.39403 92 -0.842112 4.69522

Hispanic NA NA NA NA NA

White 2.52282 0.60446 92 1.322310 3.72333

Results are averaged over the levels of: age, group

Confidence level used: 0.95

R> lsmeans(nutr.lm, "race", weights = "outer")

race lsmean SE df lower.CL upper.CL

Black 2.54667 1.431362 92 -0.296136 5.38948

Hispanic NA NA NA NA NA

White 3.14294 0.749415 92 1.654536 4.63134

Results are averaged over the levels of: age, group

Confidence level used: 0.95

R> lsmeans(nutr.lm, "race", weights = "cells")

race lsmean SE df lower.CL upper.CL

Black 0.380952 1.166180 92 -1.93518 2.69709

Hispanic 1.666667 3.085422 92 -4.46125 7.79458

White 2.795181 0.586592 92 1.63016 3.96020

Results are averaged over the levels of: age, group

Confidence level used: 0.95

Figure 6: Comparison of four different weighting methods

The previous results using "outer" weights are the same as those using "proportional" weights on
one factor at a time. Thus, if only one factor is being averaged over, "outer" and "proportional"

are the same. Another way to look at it is that outer weights are like the expected counts in a
chi-square test; each factor is weighted independently of the others.

The results for "cells" weights stand out because everything is estimable—that’s because the
empty cells in the data were given weight zero. These results are the same as the unadjusted means:

R> with(nutrition, tapply(gain, race, mean))

Black Hispanic White

0.380952 1.666667 2.795181

15.2 Alternative covariate adjustments

The framing data in the mediation package has the results of an experiment conducted by Brader
et al. (2008) where subjects were given the opportunity to send a message to Congress regarding
immigration. However, before being offered this, some subjects (treat=1) were first shown a news
story that portrays Latinos in a negative way. Besides the binary response (whether or not they
elected to send a message), we also measured emo, the subjects’ emotional state after the treatment
was applied. There are various demographic variables as well.

Before fitting a logistic regression model, I will change the labels for educ to shorter strings.

R> library("mediation")

R> levels(framing$educ) = c("NA","Ref","< HS", "HS", "> HS","Coll +")

R> framing.glm = glm(cong_mesg ~ age + income + educ + emo + gender * factor(treat),

family = binomial, data = framing)

The left-hand plot in Figure 7 displays the conventional adjusted means, where predictions are
made with the covariates age, income, and emo set to their mean values:

R> lsmip(framing.glm, treat ~ educ | gender, type = "response")
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Figure 7: Estimated responses for the framing data. (a) Holding emo constant at its mean; (b) Using
predictions of emo for each treat.

This plot is rather implausible because the displayed treatment effects are the opposite for females
as for males, and the effect of education isn’t monotone as one might expect.

However, emo is a post-treatment measurement. This means that the treatment could have
affected it (it is a mediating covariate). If it is indeed affected by treat, then Figure 7(a) would be
misleading because emo is held constant. Instead, consider making the predictions where emo is set
to its predicted value at each combination of treat and the demographic variables. This is easily
done by setting cov.reduce to a formula for how to predict emo:

R> lsmip(framing.glm, treat ~ educ | gender, type = "response",

cov.reduce = emo ~ treat*gender + age + educ + income)

This plot is shown in Figure 7(b). It is quite different, suggesting that emo does indeed play a strong
mediating role. (The mediation package has functions for estimating the strength of these effects.)
The predictions suggest that, taking emotional response into account, male subjects exposed to the
negative news story are more likely to send the message than are females or those not seeing the
negative news story. Also, the effect of educ is (almost) monotone. You can see what values of emo
are used in these predictions by looking at the grid slot in the reference grid:

R> ref.grid(framing.glm,

cov.reduce = emo ~ treat*gender + age + educ + income)@grid

age income educ emo gender treat .wgt.

1 47.766 10.7962 < HS 8.32779 male 0 6

2 47.766 10.7962 HS 7.27257 male 0 32

3 47.766 10.7962 > HS 6.47527 male 0 24

4 47.766 10.7962 Coll + 5.26561 male 0 34

5 47.766 10.7962 < HS 8.55422 female 0 8

6 47.766 10.7962 HS 7.49899 female 0 37

7 47.766 10.7962 > HS 6.70169 female 0 23

8 47.766 10.7962 Coll + 5.49203 female 0 33
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9 47.766 10.7962 < HS 9.99963 male 1 2

10 47.766 10.7962 HS 8.94440 male 1 9

11 47.766 10.7962 > HS 8.14711 male 1 13

12 47.766 10.7962 Coll + 6.93745 male 1 6

13 47.766 10.7962 < HS 9.61805 female 1 4

14 47.766 10.7962 HS 8.56282 female 1 14

15 47.766 10.7962 > HS 7.76552 female 1 10

16 47.766 10.7962 Coll + 6.55587 female 1 10

whereas the overall mean of 6.974 is used as the value of emo in Figure 7(a).
Another use of formulas in cov.reduce is to create representative values of some covariates

when others are specified in at. For example, suppose there are three covariates x1, x2, x3 in a
model, and we want to see predictions at a few different values of x1. We might use

R> rg <- ref.grid(my.model, at = list(x1 = c(5,10,15)),

cov.reduce = list(x2 ~ x1, x3 ~ x1 + x2))

(When more than one formula is given, they are processed in the order given.) The values used for
x2 and x3 will depend on x1 and should in some sense be more realistic values of those covariates
as x1 varies than would be the overall means of x2 and x3. Of course, it would be important to
display the values used—available as rg@grid—when reporting the analysis.

16 Other types of models

16.1 Models supported by lsmeans

The lsmeans package comes with built-in support for quite a number of packages and model
classes, including "lm", "mlm", "aov", "aovlist", and "glm" in the stats package, mixed models
such as "lme", "lmerMod", and "glmerMod", several survival models, GEE-type models, models
having responses that are ordinal, multinomial, counts, and interval-(0,1), and Bayesian models.
For a complete list, use help("models").

lsmeans support for all these models works similarly to the examples we have presented. Note
that generalized linear or mixed models, and several others such as survival models, typically employ
link functions such as log or logit. In most cases, the LS means displayed are on the scale of
the linear predictor, and any averaging over the reference grid is performed on the linear-predictor
scale; but there are exceptions. Some objects have optional arguments that can be specified in the
ref.grid or lsmeans call: see ?models for details.

16.2 Ordinal-data example

The clm and clmm functions in ordinal, as well as the polr function in MASS, fit polytomous
regression models to Likert-scale data. They do this by modeling the ordinal response as a cate-
gorization of a continuous latent variable S, then estimating thresholds for this categorization and
fitting a generalized linear model to the cumulative probabilities for each threshold. By default,
lsmeans produces predictions of the latent variable.

The example shown here is based on the housing data in the MASS package, where the
response variable is satisfaction (Sat) on a three-point scale of low, medium, high; and predictors
include Type (type of rental unit, four levels), Infl (influence on management of the unit, three
levels), and Cont (contact with other residents, two levels). We will assume that the latent variable
is normally distributed (by specifying a probit link).
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Figure 8: Interaction plot for the latent variable in the housing example.

R> library("ordinal")

R> data(housing, package = "MASS")

R> housing.clm <- clm(Sat ~ (Infl + Type + Cont)^2,

data = housing, weights = Freq, link = "probit")

R> lsmip(housing.clm, Cont ~ Infl | Type, layout = c(4,1))

The plot is shown in Figure 8. Generally, the higher the influence, the higher the satisfaction.
Overall F tests of the Infl effect suggest that it is strong for all four housing types:

R> test(pairs(lsmeans(housing.clm, ~ Infl | Type)), joint = TRUE)

Type df1 df2 F p.value

Tower 2 NA 7.938 0.0004

Apartment 2 NA 40.041 <.0001

Atrium 2 NA 3.135 0.0435

Terrace 2 NA 10.823 <.0001

The tests are asymptotic (signaled by df2 = NA), so they are actually chi-square tests for the
statistics X2 = d f1 · F with d f1 degrees of freedom. Higher contact also seems to be associated with
higher satisfaction, but terrace apartments may be an exception. Let’s see:

R> test(pairs(lsmeans(housing.clm, ~ Cont | Type)), joint = TRUE)

Type df1 df2 F p.value

Tower 1 NA 8.466 0.0036

Apartment 1 NA 13.098 0.0003

Atrium 1 NA 1.421 0.2332

Terrace 1 NA 0.931 0.3346

So the effect is inconclusive for both atria and terraces.
The mode argument may be used to choose what to examine. Modes "linear.predictor"

and "cum.prob" create an additional pseudo-factor named cut for the thresholds at which the
predictions are made.
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R> ref.grid(housing.clm, mode = "cum.prob")

'ref.grid' object with variables:

Infl = Low, Medium, High

Type = Tower, Apartment, Atrium, Terrace

Cont = Low, High

cut = multivariate response levels: Low|Medium, Medium|High

So here are our estimated marginal probabilities for Infl of being less than highly satisfied:

R> lsmeans(housing.clm, ~ Infl, at = list(cut = "Medium|High"),

mode = "cum.prob")

Infl cumprob SE df asymp.LCL asymp.UCL

Low 0.704649 0.0178354 NA 0.669692 0.739605

Medium 0.606165 0.0197268 NA 0.567501 0.644828

High 0.442192 0.0269420 NA 0.389386 0.494997

Results are averaged over the levels of: Type, Cont

Confidence level used: 0.95

Compare these results with those for the back-transformed linear predictor:

R> summary(lsmeans(housing.clm, ~ Infl, at = list(cut = "Medium|High"),

mode = "linear.predictor"), type = "response")

Infl cumprob SE df asymp.LCL asymp.UCL

Low 0.716271 0.0185478 NA 0.678853 0.751465

Medium 0.609159 0.0202367 NA 0.568995 0.648191

High 0.439691 0.0275347 NA 0.386446 0.494052

Results are averaged over the levels of: Type, Cont

Confidence level used: 0.95

Intervals are back-transformed from the probit scale

The results are similar, but somewhat different because of the back-transformation coming before
(first case) or after (second case) averaging or computing confidence limits.

16.3 Chick weights, revisited

Previously, we used the ChickWeight data to illustrate the use of lstrends. That example made
the simplifying assumption that the growth trends are linear, which is clearly questionable. To
do a better job of fitting the data, consider instead the idea of fitting a logistic curve to each
chick’s data. The stats package provides the SSlogis function for this purpose: it is an S-shaped
curve (scaled from the cdf of a logistic distribution) having three parameters asym (the asymptotic
value at which it levels off), xmid (the x coordinate of its inflection point), and scal (roughly the
difference between the median and the .73rd quantile). Also, the nlme package’s nlme function
can fit a set of nonlinear curves such that the parameters of those curves may be modeled using a
mixed-effects linear model.
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Accordingly, let us fit a model where each chick has a logistic curve for which the asym parameter
varies randomly for each chick, and for which both asym and xmid depend on the chick’s diet.
We chose starting values by examining the curves and making a rough judgment of the typical
asymptotic value, midpoint, and scale for each diet. We need to keep firmly in mind how factors
are coded; so we explicitly show that we intend to use "contr.treatment" coding, by which the
first mean is estimated directly, and the remaining estimates are offsets from that. We need a set
of four starting values for asym and xmid, and one for scal.

R> require("nlme")

R> options(contrasts = c("contr.treatment", "contr.poly"))

R> Chick.nlme = nlme(weight ~ SSlogis(Time, asym, xmid, scal),

data = ChickWeight,

fixed = list(asym + xmid ~ Diet, scal ~ 1),

random = asym ~ 1 | Chick,

start = c(200, 100, 200, 100, 10, 0, 0, 0, 7))

R> Chick.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: weight ~ SSlogis(Time, asym, xmid, scal)

Data: ChickWeight

Log-likelihood: -2439.4

Fixed: list(asym + xmid ~ Diet, scal ~ 1)

asym.(Intercept) asym.Diet2 asym.Diet3 asym.Diet4 xmid.(Intercept)

221.207493 75.235197 198.767610 90.692332 12.216286

xmid.Diet2 xmid.Diet3 xmid.Diet4 scal

1.870092 4.464178 0.929361 7.059857

Random effects:

Formula: asym ~ 1 | Chick

asym.(Intercept) Residual

StdDev: 66.9958 13.8516

Number of Observations: 578

Number of Groups: 50

Now we can use lsmeans to compare the parameters based on Diet:

R> cld(lsmeans(Chick.nlme, ~ Diet, param = "asym"))

Diet lsmean SE df lower.CL upper.CL .group

1 221.207 16.8641 520 188.077 254.338 1

2 296.443 24.3132 520 248.679 344.207 2

4 311.900 24.0879 520 264.578 359.221 2

3 419.975 29.4935 520 362.034 477.916 3

Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 4 estimates

significance level used: alpha = 0.05

R> cld(lsmeans(Chick.nlme, ~ Diet, param = "xmid"))
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Diet lsmean SE df lower.CL upper.CL .group

1 12.2163 0.552564 520 11.1308 13.3018 1

4 13.1456 0.598941 520 11.9690 14.3223 12

2 14.0864 0.642599 520 12.8240 15.3488 2

3 16.6805 0.726923 520 15.2524 18.1085 3

Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 4 estimates

significance level used: alpha = 0.05

The result is that diet 3 has both a higher mean asym an a higher mean xmid than the other diets.
This is compatible with the results of the earlier lstrends analysis, but grounded in terms of the
parameters of the logistic curve.

16.4 Extending to more models

The functions ref.grid and lsmeans work by first reconstructing the dataset (so that the reference
grid can be identified) and extracting needed information about the model, such as the regression
coefficients, covariance matrix, and the linear functions associated with each point in the reference
grid. For a fitted model of class, say, "modelobj", these tasks are accomplished by defining S3 meth-
ods recover.data.modelobj and lsm.basis.modelobj. The help page "extending-lsmeans" and
the vignette by the same name provide details and examples.

Developers of packages that fit models are encouraged to include support for lsmeans by
incorporating (and exporting) recover.data and lsm.basis methods for their model classes.

16.5 Bayesian models

Certain Bayesian models are now supported by lsmeans. For illustration, consider a two-factor
Poisson regression example given in the MCMCpack package:

R> library("MCMCpack")

R> counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

R> outcome <- gl(3, 1, 9)

R> treatment <- gl(3, 3)

R> posterior <- MCMCpoisson(counts ~ outcome + treatment, mcmc = 1000)

The result is an mcmc object (defined in the coda package), but it has an added "call" attribute
that enables lsmeans to do its work. Here are results for treatments, averaged over outcomes:

R> ( post.lsm <- lsmeans(posterior, "treatment") )

treatment lsmean SE df asymp.LCL asymp.UCL

1 2.78820 0.158523 NA 2.47750 3.09890

2 2.80098 0.129532 NA 2.54711 3.05486

3 2.80179 0.138729 NA 2.52988 3.07369

Results are averaged over the levels of: outcome

Confidence level used: 0.95
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This is a frequentist summary, based on the mean and covariance of the regression parameters
in the posterior sample. But lsmeans provides an as.mcmc method to obtain a sample from
the posterior distribution of the LS means (that is, the original posterior sample of regression
coefficients, transformed by the appropriate linear functions.)

R> library("coda")

R> summary(as.mcmc(post.lsm))

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

treatment 1 2.79 0.159 0.00501 0.0233

treatment 2 2.80 0.130 0.00410 0.0160

treatment 3 2.80 0.139 0.00439 0.0167

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

treatment 1 2.45 2.69 2.81 2.91 3.07

treatment 2 2.53 2.71 2.80 2.89 3.04

treatment 3 2.52 2.72 2.81 2.90 3.04

Since as.mcmc produces an mcmc object, any of the other available methods may be used with it.

17 Discussion

The design goal of lsmeans is primarily to provide the functionality of the LSMEANS statement
in various SAS procedures. Thus its emphasis is on tabular results which, of course, may also be
used as data for further analysis or graphics. By design, it can be extended with relative ease to
additional model classes. A unique capability of lsmeans is its explicit reliance on the concept of
a reference grid, which I feel is a useful approach for understanding what is being computed.

Some lsmeans capabilities exceed those of SAS, including the lstrends capability, more flexi-
bility in organizing the output, and more built-in contrast families. In addition, SAS does not allow
LS means for factor combinations when the model does not include the interaction of those factors;
or creating a grid of covariate values using at.

There are a few other R packages that provide capabilities that overlap with those of lsmeans.
The effects package (Fox, 2003; Fox and Hong, 2009) can compute LS means. However, for an
unbalanced dataset, it does not use equal weights, but rather it appears to use “outer” weights, as
described in Section 15.1. Also, it does not check estimability, so some results could be questionable.
The emphasis of effects is on graphical rather than tabular displays. It has special strengths for
curve-fitting models such as splines. In contrast, lsmeans’s strengths are more in the area of
factorial models where one wants traditional summaries in the form of estimates, contrasts, and
interaction plots.
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The doBy package (Højsgaard et al., 2013) provides an LSmeans function that has some of
the capabilities of lsmeans, but it produces a data frame rather than a reusable object. In earlier
versions of the package, this function was named popMeans. The package also has an LSmatrix

function to obtain the linear functions needed to obtain LS means. Also, the lmerTest package
also offers an lsmeans function, as well as difflsmeans for differences of LS means. These are
designed particularly for lmerMod objects.
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