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Abstract

Conditioning on the observed data is an important and flexible design

principle for statistical test procedures. Although generally applicable,

permutation tests currently in use are limited to the treatment of special

cases, such as contingency tables or K-sample problems. A new theoret-

ical framework for permutation tests opens up the way to a unified and

generalized view. We argue that the transfer of such a theory to prac-

tical data analysis has important implications in many applications and

requires tools that enable the data analyst to compute on the theoretical

concepts as closely as possible. We re-analyze four data sets by adapting

the general conceptual framework to these challenging inference problems

and utilizing the coin add-on package in the R system for statistical com-

puting to show what one can gain from going beyond the ‘classical’ test

procedures.
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1 INTRODUCTION

The distribution of a test statistic under the circumstances of a null hypothesis
clearly depends on the unknown distribution of the data and thus is unknown
as well. Two concepts are commonly applied to dispose of this dependency.
Unconditional tests impose assumptions on the distribution of the data such that
the null distribution of a test statistic can be derived analytically. In contrast,
conditional tests replace the unknown null distribution by the conditional null
distribution, i.e., the distribution of the test statistic given the observed data.
The latter approach is known as permutation testing and was developed by
R. A. Fisher more than 70 years ago (Fisher, 1935). The pros and cons of
both approaches in different fields of application have been widely discussed
(e.g. by Ludbrook and Dudley, 1998; Berger, 2000; Shuster, 2005). Here, we
focus on the practical aspects of permutation testing rather than dealing with
its methodological foundations.

For the construction of permutation tests it is common exercise to ‘recy-
cle’ test statistics well known from the unconditional world, such as linear rank
statistics, ANOVA F statistics or χ2 statistics for contingency tables, and to
replace the unconditional null distribution with the conditional distribution of
the test statistic under the null hypothesis (Edgington, 1987; Good, 2000; Pe-
sarin, 2001; Ernst, 2004). Because the choice of the test statistic is the only
‘degree of freedom’ for the data analyst, the classical view on permutation tests
requires a ‘cook book’ classification of inference problems (categorical data anal-
ysis, multivariate analysis, K-sample location problems, correlation, etc.), each
being associated with a ‘natural’ form of the test statistic.

The theoretical advances of the last decade (notably Strasser and Weber,
1999; Pesarin, 2001; Janssen and Pauls, 2003) give us a much better under-
standing of the strong connections between the ‘classical’ permutation tests
defined for different inference problems. As we will argue in this paper, the
new theoretical tools open up the way to a simple construction principle for test
procedures in new and challenging inference problems. Especially attractive for
this purpose is the theoretical framework for permutation tests developed by
Strasser and Weber (1999). This unifying theory is based on a flexible form of
multivariate linear statistics for the general independence problem.

This framework provides us with a conceptual Lego system for the con-
struction of permutation tests consisting of Lego bricks for linear statistics suit-
able for different inference problems (contingency tables, multivariate problems,
etc.), different forms of test statistics (such as quadratic forms for global tests
or test statistics suitable for multiple comparison procedures), and several ways
to derive the conditional null distribution (by means of exact computations or
approximations). The classical procedures, such as a permutation t test, are
part of this framework and, even more interesting, new test procedures can be
embedded into the same theory whose main ideas are sketched in Section 2.

Currently, the statistician’s toolbox consists of rather specialized spanners,
such as the Wilcoxon-Mann-Whitney test for comparing two distributions or the
Cochran-Mantel-Haenszel χ2 test for independence in contingency tables. With

2



this work, we add an adjustable spanner to the statistician’s toolbox which helps
to address both the common as well as new or unusual inference problems with
the appropriate conditional test procedures. In the main part of this paper
we show how one can construct and implement permutation tests ‘on the fly’
by plugging together Lego bricks for the multivariate linear statistic, the test
statistic and the conditional null distribution, both conceptually and practically
by means of the coin add-on package (Hothorn et al., 2006) in the R system for
statistical computing (R Development Core Team, 2005).

2 A CONCEPTUAL LEGO SYSTEM

To fix notations, we assume that we are provided with independent and iden-
tically distributed observations (Yi,Xi) for i = 1, . . . , n. The variables Y and
X from sample spaces Y and X may be measured at arbitrary scales and may
be multivariate as well. We are interested in testing the null hypothesis of
independence of Y and X

H0 : D(Y|X) = D(Y)

against arbitrary alternatives. Strasser and Weber (1999) suggest to derive
scalar test statistics for testing H0 from multivariate linear statistics of the
form

T = vec

(

n
∑

i=1

g(Xi)h(Yi)
⊤

)

∈ R
pq×1.

Here, g : X → R
p×1 is a transformation of the X measurements and h : Y →

R
q×1 is called influence function. The function h(Yi) = h(Yi, (Y1, . . . ,Yn))

may depend on the full vector of responses (Y1, . . . ,Yn), however only in a
permutation symmetric way, i.e., the value of the function must not depend on
the order in which Y1, . . . ,Yn appear. We will give several examples how to
choose g and h for specific inference problems in Section 3.

The distribution of T depends on the joint distribution of Y and X, which
is unknown under almost all practical circumstances. At least under the null
hypothesis one can dispose of this dependency by fixing X1, . . . ,Xn and con-
ditioning on all possible permutations S of the responses Y1, . . . ,Yn. Tests
that have been constructed by means of this conditioning principle are called
permutation tests.

The conditional expectation µ ∈ R
pq×1 and covariance Σ ∈ R

pq×pq of T

under H0 given all permutations σ ∈ S of the responses are derived by Strasser
and Weber (1999):

µ = E(T|S) = vec

((

n
∑

i=1

g(Xi)

)

E(h|S)⊤

)

Σ = V(T|S) =
n

n− 1
V(h|S)⊗

(

∑

i

g(Xi)⊗ g(Xi)
⊤

)
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−
1

n− 1
V(h|S)⊗

(

∑

i

g(Xi)

)

⊗

(

∑

i

g(Xi)

)⊤

where ⊗ denotes the Kronecker product, and the conditional expectation of the
influence function is E(h|S) = n−1

∑

i h(Yi) with corresponding q×q covariance
matrix

V(h|S) = n−1
∑

i

(h(Yi)− E(h|S)) (h(Yi)− E(h|S))
⊤
.

The key step for the construction of test statistics based on the multivariate
linear statistic T is its standardization utilizing the conditional expectation µ

and covariance matrix Σ. Univariate test statistics c mapping a linear statistic
T ∈ R

pq×1 into the real line can be of arbitrary form. Obvious choices are
the maximum of the absolute values of the standardized linear statistic or a
quadratic form:

cmax(T, µ,Σ) = max

∣

∣

∣

∣

T− µ

diag(Σ)1/2

∣

∣

∣

∣

,

cquad(T, µ,Σ) = (T− µ)⊤Σ+(T− µ),

involving the Moore-Penrose inverse Σ+ of Σ.
The conditional distribution P(c(T, µ,Σ) ≤ z|S) is the number of permuta-

tions σ ∈ S of the data with corresponding test statistic not exceeding z divided
by the total number of permutations in S. For some special forms of the multi-
variate linear statistic the exact distribution of some test statistics is tractable
for small and moderate sample sizes. In principle, resampling procedures can
always be used to approximate the exact distribution up to any desired accu-
racy by evaluating the test statistic for a random sample from the set of all
permutations S. It is important to note that in the presence of a grouping of
the observations into independent blocks, only permutations within blocks are
eligible and that the conditional expectation and covariance matrix need to be
computed separately for each block.

Less well known is the fact that a normal approximation of the conditional
distribution can be computed for arbitrary choices of g and h. Strasser and
Weber (1999) showed in their Theorem 2.3 that the conditional distribution of
linear statistics T with conditional expectation µ and covariance Σ tends to a
multivariate normal distribution with parameters µ and Σ as n → ∞. Thus, the
asymptotic conditional distribution of test statistics of the form cmax is normal
and can be computed directly in the univariate case (pq = 1) and by numerical
algorithms in the multivariate case (Genz, 1992). For quadratic forms cquad
which follow a χ2 distribution with degrees of freedom given by the rank of Σ
(see Johnson and Kotz, 1970, Chapter 29), exact probabilities can be computed
efficiently.
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3 PLAYING LEGO

The Lego system sketched in the previous section consists of Lego bricks for
the multivariate linear statistic T, namely the transformation g and influence
function h, multiple forms of the test statistic c and several choices of approx-
imations of the null distribution. In this section, we will show how classical
procedures, starting with the conditional Kruskal-Wallis test and the Cochran-
Mantel-Haenszel test, can be embedded into this general theory and, much more
interesting from our point of view, how new conditional test procedures can be
constructed conceptually and practically. Therefore, each inference problem
comes with R code performing the appropriate conditional test using the coin

functionality which enables the data analyst to benefit from this simple method-
ology in typical data analyses. All following analyses are reproducible from the
coin package vignette; this document can be accessed via

R> vignette("LegoCondInf", package = "coin")

directly in R.

Independent K-Samples: Genetic Components of Alcoholism. Vari-
ous studies have linked alcohol dependence phenotypes to chromosome 4. One
candidate gene is NACP (non-amyloid component of plaques), coding for alpha
synuclein. Bönsch et al. (2005) found longer alleles of NACP -REP1 in alcohol-
dependent patients compared with healthy controls and report that the allele
lengths show some association with levels of expressed alpha synuclein mRNA
in alcohol-dependent subjects (see Figure 1). Allele length is measured as a sum
score built from additive dinucleotide repeat length and categorized into three
groups: short (0− 4, n = 24), intermediate (5− 9, n = 58), and long (10− 12,
n = 15).

Our first attempt to test for different levels of gene expression in the three
groups is the classical Kruskal-Wallis test. Here, the transformation g is a
dummy coding of the allele length (g(Xi) = (0, 1, 0)⊤ for intermediate length,
for example) and the value of the influence function h(Yi) is the rank of Yi in
Y1, . . . ,Yn. Thus, the linear statistic T is the vector of rank sums in each of
the three groups and the test statistic is a quadratic form (T− µ)Σ+(T− µ)⊤

utilizing the conditional expectation µ and covariance matrix Σ. For computing
p-values, the limiting χ2 distribution is typically used.

In R, this specific test is readily implemented in the well established func-
tion kruskal.test which takes a symbolic formula description of the inference
problem and a data set containing the actual observations as its main argu-
ments. Here, the independence of expression levels (elevel) and allele lengths
(alength) is formulated as elevel ~ alength, the associated observations are
available in a data frame alpha:

R> kruskal.test(elevel ~ alength, data = alpha)

Kruskal-Wallis rank sum test
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Figure 1: alpha data: Distribution of levels of expressed alpha synuclein mRNA
in three groups defined by the NACP -REP1 allele lengths.

data: elevel by alength

Kruskal-Wallis chi-squared = 8.8302, df = 2, p-value =

0.01209

Alternatively, the same result can be obtained by embedding the classical
Kruskal-Wallis test into the more general conditional inference framework im-
plemented in the independence_test function in the coin package. This also
takes a formula and a data frame as its main arguments and additionally allows
for the specification of the transformations g and h via xtrafo and ytrafo, re-
spectively, as well as setting teststat to "maximum" or "quadratic" (for cmax

or cquad, respectively) and the distribution to be used. Thus, for computing
the Kruskal-Wallis test ytrafo has to be set to the function rank_trafo for
computing ranks, in xtrafo dummy codings have to be used (the default for
categorical variables), teststat is the "quadratic" type statistic cquad and the
default asymptotic distribution is applied:

R> independence_test(elevel ~ alength, data = alpha, ytrafo = rank_trafo, teststat = "quadra

Asymptotic General Independence Test

data: elevel by

alength (short, intermediate, long)

chi-squared = 8.8302, df = 2, p-value = 0.01209

The output gives equivalent results as reported by kruskal.test above. So
what is the advantage of using independence_test? Going beyond the clas-
sical functionality in kruskal.test would require extensive programming but
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is easily possible in independence_test. For example, the resampling distri-
bution instead of the asymptotic distribution could be used by setting distri-

bution = approximate(). More interestingly, ignoring the ordinal structure
of the allele length is suboptimal, especially when we have an ordered alterna-
tive in mind. An intuitive idea for capturing the ordinal information would be
to assign numeric scores to the allele length categories in the transformation g

rather than the dummy codings used above. A natural choice of scores would
be the mid-points of the intervals originally used to categorize the allele lengths,
i.e., g(Xi) = 2 for short (∈ [0, 4]), 7 for intermediate (∈ [5, 9]) and 11 for long
(∈ [10, 12]) alleles. In R, such a function g is easily implemented as

R> mpoints <- function(x) c(2, 7, 11)[unlist(x)]

which returns an n-vector and can then be passed as xtrafo argument to in-

dependence_test:

R> independence_test(elevel ~ alength, data = alpha, ytrafo = rank_trafo, xtrafo = mpoints)

Asymptotic General Independence Test

data: elevel by

alength (short, intermediate, long)

Z = 2.9263, p-value = 0.00343

alternative hypothesis: two.sided

This p-value emphasizes the impression from Figure 1 that the expression levels
increase with increasing allele lengths. Note that due to usage of scalar trans-
formations g and h, the cmax- and cquad-type test statistics are equivalent and
hence teststat is not set (defaulting to "maximum"). Furthermore, it should
be pointed out that a test based on such a numerical transformation for ordinal
variables is equivalent to linear-by-linear association tests (Agresti, 2002) for
which further convenience infrastructure is available in the independence_test
function via the scores argument.

Contingency Tables: Smoking and Alzheimer’s Disease. Salib and
Hillier (1997) report results of a case-control study on Alzheimer’s disease and
smoking behavior of 198 female and male Alzheimer patients and 340 controls.
The data shown in Table 1 have been re-constructed from Table 4 in Salib and
Hillier (1997) and are depicted in Figure 2. The authors conclude that ‘cigarette
smoking is less frequent in men with Alzheimer’s disease.’

We are interested to assess whether there is any association between smok-
ing and Alzheimer’s (or other dementia) diseases and, in a second step, how a
potential association can be described. First, the global null hypothesis of in-
dependence between smoking behavior and disease status for both females and
males, i.e., treating gender as a block factor, can be tested with a cquad-type
test statistic, i.e., the Cochran-Mantel-Haenszel test:

R> it_alz <- independence_test(disease ~ smoking | gender, data = alzheimer,

teststat = "quadratic")

R> it_alz
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Table 1: alzheimer data: Smoking and Alzheimer’s disease.

No. of cigarettes daily
None <10 10–20 >20

Female

Alzheimer 91 7 15 21
Other dementias 55 7 16 9
Other diagnoses 80 3 25 9

Male

Alzheimer 35 8 15 6
Other dementias 24 1 17 35
Other diagnoses 24 2 22 11

Asymptotic General Independence Test

data: disease by

smoking (None, <10, 10-20, >20)

stratified by gender

chi-squared = 23.316, df = 6, p-value = 0.0006972

which suggests that there is a clear deviation from independence. By default,
the influence function h (the ytrafo argument) and the transformation g (the
xtrafo argument) are dummy codings of the factors disease status Y and smok-
ing behavior X, i.e., h(Yi) = (1, 0, 0)⊤ and g(Xi) = (1, 0, 0, 0)⊤ for a non-
smoking Alzheimer patient. Consequently, the linear multivariate statistic T

based on g and h is the contingency table of both variables

R> statistic(it_alz, type = "linear")

Alzheimer Other dementias Other diagnoses

None 126 79 104

<10 15 8 5

10-20 30 33 47

>20 27 44 20

with conditional expectation expectation(it_alz) and conditional covariance
covariance(it_alz) which are available for standardizing the contingency ta-
ble T. The conditional distribution is approximated by its limiting χ2 distribu-
tion by default.

Given that there is significant departure from independence, we further in-
vestigate the structure of association between smoking and Alzheimer’s disease.
First we assess for which gender the violation of independence occured, i.e.,
perform independence tests for female and male subjects separately

R> females <- alzheimer$gender == "Female"

R> males <- alzheimer$gender == "Male"

R> pvalue(independence_test(disease ~ smoking, data = alzheimer,

subset = females, teststat = "quadratic"))
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Figure 2: alzheimer data: Association of smoking behavior and disease status
stratified by gender.

[1] 0.09060652

R> pvalue(independence_test(disease ~ smoking, data = alzheimer,

subset = males, teststat = "quadratic"))

[1] 3.169418e-06

where it turns out that the association is due to the male patients only (see
also Figure 2) and we therefore focus on the male patients in the following. A
standardized contingency table is useful for gaining insight into the association
structure of contingency tables. Thus, a test statistic based on the standardized
linear statistic T (and thus the standardized contingency table) would be more
useful than a cquad-type test statistic where the contributions of all cells are
collapsed in such a quadratic form. Therefore, we choose the maximum of the
standardized contingency table as cmax test statistic via

R> it_alzmax <- independence_test(disease ~ smoking, data = alzheimer,

subset = males, teststat = "maximum")

R> it_alzmax

Asymptotic General Independence Test

data: disease by smoking (None, <10, 10-20, >20)

maxT = 4.9504, p-value = 6.781e-06

alternative hypothesis: two.sided

where the underlying standardized contingency table highlights the cells with
deviations from independence
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R> statistic(it_alzmax, type = "standardized")

Alzheimer Other dementias Other diagnoses

None 2.5900465 -2.340275 -0.1522407

<10 2.9713093 -2.056864 -0.8446233

10-20 -0.7765307 -1.237441 2.1146396

>20 -3.6678046 4.950373 -1.5303056

This leads to the impression that heavy smokers suffer less frequently from
Alzheimer’s disease but more frequently from other dementias than expected
under independence. However, interpreting the standardized contingency table
requires knowledge about the distribution of the standardized statistics. An
approximation of the joint distribution of all elements of the standardized con-
tingency table can be obtained from the 12-dimensional multivariate limiting
normal distribution of the linear statistic T. Most useful is an approximation
of the 95% quantile of the permutation null distribution which is available from

R> qperm(it_alzmax, 0.95)

[1] 2.814126

Alternatively, and more conveniently, one can switch to p-values adjusted for
multiple testing by a single-step max-T multiple testing approach:

R> pvalue(it_alzmax, method = "single-step")

Alzheimer Other dementias Other diagnoses

None 0.09269080 1.707170e-01 0.9999984

<10 0.03160184 3.072381e-01 0.9719564

10-20 0.98165407 8.418199e-01 0.2751902

>20 0.00271631 7.906569e-06 0.6622096

These results support the conclusion that the rejection of the null hypothesis of
independence is due to a large number of patients with other dementias and a
small number with Alzheimer’s disease in the heavy smoking group. In addition,
there is some evidence that, for the small group of men smoking less than ten
cigarettes per day, the reverse association is true.

Multivariate Response: Photococarcinogenicity Experiments. The
effect on tumor frequency and latency in photococarcinogenicity experiments,
where carcinogenic doses of ultraviolet radiation (UVR) are administered, are
measured by means of (at least) three response variables: the survival time,
the time to first tumor and the total number of tumors of animals in different
treatment groups. The main interest is testing the global null hypothesis of no
treatment effect with respect to any of the three responses survival time, time
to first tumor or number of tumors (Molefe et al., 2005, analyze the detection
time of tumors in addition, this data is not given here). In case the global null
hypothesis can be rejected, the deviations from the partial hypotheses are of
special interest.
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Figure 3: photocar data: Kaplan-Meier estimates of time to death and time to
first tumor as well as boxplots of the total number of tumors in three treatment
groups.

Molefe et al. (2005) report data of an experiment where 108 female mice
were exposed to different levels of UVR (group A: n = 36 with topical vehicle
and 600 Robertson–Berger units of UVR, group B: n = 36 without topical
vehicle and 600 Robertson–Berger units of UVR and group C: n = 36 without
topical vehicle and 1200 Robertson–Berger units of UVR). The data are taken
from Tables 1–3 in Molefe et al. (2005), where a parametric test procedure is
proposed. Figure 3 depicts the group effects for all three response variables.

First, we construct a global test for the null hypothesis of independence of
treatment and all three response variables. A cmax-type test based on the stan-
dardized multivariate linear statistic and an approximation of the conditional
distribution utilizing the asymptotic distribution simply reads

R> it_ph <- independence_test(Surv(time, event) + Surv(dmin, tumor) + ntumor ~ group,

data = photocar)

R> it_ph

Asymptotic General Independence Test

data: Surv(time, event), Surv(dmin, tumor), ntumor by group (A, B, C)

maxT = 7.0777, p-value = 6.259e-12

alternative hypothesis: two.sided

Here, the influence function h consists of the logrank scores (the default ytrafo
argument for censored observations) of the survival time and time to first tumor
as well as the number of tumors, i.e., for the first animal in the first group
h(Y1) = (1.08, 0.56, 5)⊤ and g(X1) = (1, 0, 0)⊤. The multivariate linear statistic
T is the sum of each of the three components of the influence function h in each
of the groups, i.e.,

R> statistic(it_ph, type = "linear")

11



Surv(time, event) Surv(dmin, tumor) ntumor

A 8.894531 9.525269 276

B 18.154654 17.951560 274

C -27.049185 -27.476828 264

It is important to note that this global test utilizes the complete covariance
structure Σ when p-values are computed. Alternatively, a test statistic based
on the quadratic form cquad directly incorporates the covariance matrix and
leads to a very similar p-value.

The deviations from the partial null hypotheses, i.e., independence of each
single response and treatment groups, can be inspected by comparing the stan-
dardized linear statistic T to its critical value 2.715 (which can be obtained by
qperm(it_ph, 0.95))

R> statistic(it_ph, type = "standardized")

Surv(time, event) Surv(dmin, tumor) ntumor

A 2.327338 2.178704 0.2642120

B 4.750336 4.106039 0.1509783

C -7.077674 -6.284743 -0.4151904

or again by means of the corresponding adjusted p-values

R> pvalue(it_ph, method = "single-step")

Surv(time, event) Surv(dmin, tumor) ntumor

A 0.13591 0.18946 0.99989

B 0.00001 0.00034 1.00000

C 0.00000 0.00000 0.99859

Clearly, the rejection of the global null hypothesis is due to the group differences
in both survival time and time to first tumor whereas no treatment effect on
the total number of tumors can be observed.

Independent Two-Samples: Contaminated Fish Consumption. In the
former three applications, pre-fabricated Lego bricks—i.e., standard transforma-
tions for g and h such as dummy codings, ranks and logrank scores—have been
employed. In the fourth application, we will show how the Lego system can be
used to construct new bricks and implement a newly invented test procedure.

Rosenbaum (1994) proposed to compare groups by means of a coherence cri-

terion and studied a data set of subjects who ate contaminated fish for more than
three years in the ‘exposed’ group (n = 23) and a control group (n = 16). Three
response variables are available: the mercury level of the blood, the percentage of
cells with structural abnormalities and the proportion of cells with asymmetrical
or incomplete-symmetrical chromosome aberrations (see Figure 4). The coher-
ence criterion defines a partial ordering: an observation is said to be smaller
than another when all three variables are smaller. The rank score for observa-
tion i is the number of observations that are larger (following the above sketched
partial ordering) than observation i minus the number of observations that are
smaller. The distribution of the rank scores in both groups is to be compared
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Figure 4: mercuryfish data: Distribution of all three response variables in the
exposed group and control group.

and the corresponding test is called ‘POSET-test’ (partially ordered sets test)
and may be viewed as a multivariate form of the Wilcoxon-Mann-Whitney test.

The coherence criterion can be formulated in a simple function by utilizing
column-wise sums of indicator functions applied to all individuals

R> coherence <- function(data) {

x <- t(as.matrix(data))

apply(x, 2, function(y)

sum(colSums(x < y) == nrow(x)) - sum(colSums(x > y) == nrow(x)))

}

which is now defined as influence function h via the ytrafo argument

R> poset <- independence_test(mercury + abnormal + ccells ~ group,

data = mercuryfish, ytrafo = coherence, distribution = exact())

Once the transformations g (the default zero-one coding of the exposed and
control group) and h (the coherence criterion) are defined, we enjoy the whole
functionality of the framework, including an exact two-sided p-value

R> pvalue(poset)

[1] 4.486087e-06

and density (dperm), distribution (pperm) and quantile functions (qperm) of the
conditional distribution. When only a small number of observations is available,
it might be interesting to compare the exact conditional distribution and its
approximation via the limiting distribution. For the mercuryfish data, the
relevant parts of both distribution functions are shown in Figure 5. It turns
out that the quality of the normal approximation is excellent for this particular
problem and using the normal approximation would be sufficient for all practical
purposes in this application.
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Figure 5: mercuryfish data: Conditional distribution and asymptotic normal
approximation for the POSET test.

4 DISCUSSION

Conditioning on the observed data is a simple, yet powerful, design principle
for statistical tests. Conceptually, one only needs to choose an appropriate
test statistic and evaluate it for all admissible permutations of the data (Ernst,
2004, gives some examples). In practical setups, an implementation of this
two-step procedure requires a certain amount of programming and computing
time. Sometimes, permutation tests are even regarded as being ‘computationally
impractical’ for larger sample sizes (Balkin and Mallows, 2001).

The permutation test framework by Strasser and Weber (1999) helps us to
take a fresh look at conditional inference procedures and makes at least two
important contributions: analytic formulae for the conditional expectation and
covariance and the limiting normal distribution of a class of multivariate lin-
ear statistics. Thus, test statistics can be defined for appropriately standard-
ized linear statistics and a fast approximation of the conditional distribution is
available, especially for large sample sizes.

It is one mission, if not the mission, of statistical computing to transform
new theoretical developments into flexible software tools for the data analyst.
The coin package is an attempt to translate the theoretical concepts of Strasser
and Weber (1999) into software tools preserving the simplicity and flexibility
of the theory as closely as possible. With this package, the specialized span-
ners currently in use, such as wilcox.test for the Wilcoxon-Mann-Whitney
test or mantelhaen.test for the Cochran-Mantel-Haenszel χ2 test in the S

language and NPAR1WAY for linear rank statistics in SAS as well as the tools
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implemented in StatXact, LogXact, Stata, and Testimate (see Oster, 2002, 2003,
for an overview), are extended by independence_test, a much more flexible
and adjustable spanner.

But who stands to benefit from such a software infrastructure? We argue
that an improved data analysis is possible in cases when the appropriate con-
ditional test is not available from standard software packages. Statisticians can
modify existing test procedures or even try new ideas by computing directly
on the theory. A high-level Lego system is attractive for both researchers and
software developers, because only the transformation g and influence function h

need to be newly defined, but the burden of implementing a resampling proce-
dure, or even deriving the limiting distribution of a newly invented test statistic,
is waived.

With a unifying conceptual framework in mind and a software implementa-
tion, such as coin, at hand, we are no longer limited to already published and
implemented permutation test procedures and are free to define our own trans-
formations and influence functions, can choose several forms of suitable test
statistics and utilize several methods for the computation or approximation of
the conditional distribution of the test statistic of interest. Thus, the construc-
tion of an appropriate permutation test, for both classical and new inference
problems, is only a matter of putting together adequate Lego bricks.
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