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1 Overview

PackageNEArender is created to provide a faster, less biased, and more convenient procedure for enrichment
analysis and rendering the original data into a pathway space. The pathway scores are calculated with a
fast algorithm of the network enrichment analysis (NEA). NEArender possesses both core and ancillary
functionality for NEA.

1.1 General workflow

Figure 1: Implementation of NEArender

2 Brief description of NEA and its functions

2.1 Inputs

The three essential input components are:

1. Altered gene set (AGS): a user-defined gene set that represents an experimental result, a patient-
specific sample, a biological hypothesis etc.
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2. Functional gene set (FGS): a known or a hypothetical set of genes with a common, well defined
biological or molecular function: a pathway, an ontology term, a biological process etc.

3. Global network of functional coupling (NET): a graph where edges (functional links) represent
arbitrarily defined (e.g. experimentally verified, literature derived, or computationally inferred) relations
between gene nodes. In practice, the graph is fully defined with the list of gene pairs representing edges.
Edge weights and directions are ignored.

Note: The term “gene” is used here as a logical proxy for a range of functional components of a biological
network, such as genomic regions that encode proteins/microRNAs/enhancers/protein molecules. This imposes
the practical limitations:
1. Identifiers used in the AGS, FGS, and NET inputs should belong to the same name space (most desirably
gene symbols).
2. The parametric algorithm of enrichment evaluation used in this package would be unbiased only in scale-
free networks, i.e. where node connectivity values follow the power law distribution (Albert-László Barabási
et al., 2004). This is not the case in networks that are artificially constructed from e.g. ChIP-seq based
collections of transcription factor binding events (Bovolenta LA et al., 2012) or from computationally predicted
microRNA-transcript targeting data (Griffiths-Jones S et al., 2006). If such network or a network component
should be included, we recommend employing software that involves network permutation tests, i.e. network
randomization (Alexeyenko A et al.,2012, McCormack et al., 2013). In order to see how much a certain
network deviates from the scale-free pattern, one can use function connectivity

2.2 Analysis and its outputs

The central function of this package is nea.render(). It performs the network enrichment analysis as
described first in (Alexeyenko et al.,2012), and output contains a number of relevant statistics:

• chi-squared score,
• p-value,
• q-value (false discovery rate, or p-value adjusted for multiple testing) (Storey and Tibshirani, 2013), and
• z-score, which is, however not a direct product of the enrichment analysis. Instead, it is calculated

downstream in order to facilitate the use of NEA values in linear modeling. Since methods of the latter
are parametric and expect Gaussian values, the normally distributed (under true null) z-score fits this
scenario well.

The output also contains auxiliary values:

• number of network edges that exist between any nodes of AGS and FGS (but does not include those
within AGS or within FGS), and

• respective number of edges expected by chance, calculated with the binomial formula.

The most computationally intense part of nea.render() is counting the actual network edges in each
AGS-FGS pair. At this step, nea.render() can employ parallel jobs, which is enabled with R package
parallel by using parameter Parallelize.
If the user wants to execute the conventional binomial GSEA, then function gsea.render() can be used. It
accepts the same input as nea.render() (except parameter NET), and produces output from Fisher’s exact
test arranged similarly to that of nea.render():

• odds ratio estimate,
• p-value,
• q-value, and
• number of genes shared by AGS and FGS.
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3 Included Datasets

The package contains the following data sets:

• two versions of NET, a smaller:

– net.kegg (Kanehisa M et al., 2002) and a bigger one:
– net.merged (Merid SK et al., 2014)

• an example collection of FGSs

– can.sig.go (2406 distinct genes in 34 KEGG pathways (Kanehisa M et al., 2002) and GO terms
(Ashburner M et al., 2000 ))

• three input datasets for creating AGSs:

– somatic point mutations tcga.gbm (International Cancer Genome Consortium, 2010)
– two subsets of FANTOM5 transcriptomics data

∗ fantom5.43samples
∗ fant.carc (FANTOM Consortium and the RIKEN PMI and CLST (DGT), 2014).

Apart from directly using these .Rdata files included in the package (such as data(net.kegg)), we also
describe below, functions of NEArender for importing text files and then preparing from them AGS, FGS
and NET inputs in the R space.

Properly formatted example text files can be downloaded from here

4 Functions usage and examples

In order to run nea.render() and gsea.render(), the user should prepare the input components with
functions described below.

4.1 Preparing AGS file

Since the AGS is the most dynamic and user-specific part of the input, the functionality for AGS compilation
and processing is most developed. As mentioned above, AGSs can be prepared in two alternative ways:

1) From pre-processed R lists and matrices or
2) By providing text file inputs.

4.1.1 Alternative (1):

The function samples2ags() creates AGSs from an R matrix where each column corresponds to an individual
sample or an experimental condition and each row corresponds to an individual gene/protein (i.e. a potential
node in the network – while IDs that are not found as network nodes would be ignored). An R list of AGSs
can be prepared with samples2ags() by one out of five available algorithms (set with parameter ‘method’):
“significant”, “top”, “toppos”, “topnorm”, “toprandom” . Depending on the used algorithm, the number of
genes per AGS would be either data-driven (when all significant ones are included) or user-defined (when N
top ranking ones are included regardless of statistical significance). See help to the function (?samples2ags)
for more details
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4.1.1.1 Example of alternative (1): Here we considered FANTOM5 - 43 carincinoma cell samples
where the expression values indicated normalized tags per million (TPM) from CAGE-RNA sequencing
(FANTOM Consortium and the RIKEN PMI and CLST (DGT), 2014). AGS lists are then obtained by
“topnorm” method by which we perform data reduction and obtain sample-specific lists of altered genes (these
can partially overlap with each other).

# input <-
# fread('http://research.scilifelab.se/andrej_alexeyenko/downloads/test_data/FANTOM5.43samples.txt',
# sep='\t',header=T,stringsAsFactors=FALSE,data.table = F)
# Converting genenames as rownames rownames(input)
# <-input[,1] input <- as.matrix(input[,c(2:ncol(input))])

data("fantom5.43samples")
input <- fantom5.43samples
dim(input)

## [1] 16619 43

ags.list1 <- samples2ags(input, Ntop = 20, method = "topnorm")

As we see, the matrix (i.e input) consists of 16619 gene rows and 43 sample columns. Next, we apply “topnorm”
(method="topnorm") to each sample column to obtain an R list ags.list1 where each sample-specific list
element contains one sample-specific AGS: a set of top 20 genes, each of which was selected for being most
deviating from its mean across the sample cohort (see the 2nd section of “Altered gene sets” in Figure 1).
Note that here 20 genes per AGS were picked regardless of their formal significance. For comparison, by
setting parameter method=”significant” we could select for each AGS all genes that pass a one-sided z-test
that pass a specified p-value threshold, adjusted for multiple testing. In this case, AGSs typically would
contain gene sets of variable size. Next, a special function mutations2ags() also allows direct creation of
AGSs from an R matrix that contains full sets of mutated genes for each sample:

data("tcga.gbm", package = "NEArender")
ags.list3 <- mutations2ags(tcga.gbm, col.mask = "[-.]01$")

we optionally used the parameter col.mask in order to select only tumor samples by TCGA barcodes – hence
the parameter is TCGA-specific.

4.1.2 Alternative (2):

In case of importing a text file with ready, pre-created AGSs, one should use import.gs(). The function
returns a list of as many elements as there were distinct AGS labels in the file (i.e. typically multiple AGSs
are imported from a single file).

4.1.2.1 Example of alternative (2): The file cluster2_Downregulated_ags.txt contains 274 genes
which represents a sample-specific AGSs, i.e. lists of altered genes that we have compiled with a certain
procedure before. Now we are just importing the structure to be used as a list ags.list within R.

ags.list2 <- import.gs("http://research.scilifelab.se/andrej_alexeyenko/downloads/test_data/cluster2_Downregulated_ags.txt",
Lowercase = 1, col.gene = 1, col.set = 3, gs.type = "ags")

Based on the format of the above example files, users can create their own TAB-delimited text files to be
used as ags.list. The column positions in the files can be arbitrarily changed using parameters col.gene
and col.set. One can view the data formats of current examples listed in NEArender package simply by
(head(can.sig.go) or head(fantom5.43samples))
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4.2 Preparing FGS file

Since FGSs usually pre-exist rather than are created from user’s data, they are imported from text files.
For this reason their format and the import procedure using the function import.gs() are identical to
the alternative (2) above. However, there is a special option unique to NEA and not available in GSEA,
where single genes can be treated as FGS. A full list of such FGSs can be automatically created from all
network nodes of NET with as_genes_fgs(), so that each FGS item in the output list contains just one
gene. Alternatively, users can create more specific single- or multi-gene FGS collections of their own and then
import them with import.gs(). In such files, one typically uses the gene/protein IDs as the FGS labels.
The users can upload their own FGS text files. Identically to AGS, an FGS file should be a tab-delimited
text file containing gene/protein/nodeIDs and their FGS labels (such as pathway, ontology terms, or being
user-defined).

4.2.0.2 Examples : Here we used file can.sig.go as a small collection of functional gene sets (FGS). It
contains 34 GO terms and KEGG pathway that represent signaling processes related to many diseases, with
a special focus on cancer. It can be used for a primary, exploratory analysis of the package functionality
(note that since the AGS and FGS formats are identical, it could also be submitted as an AGS collection).

fgs.list <- import.gs("http://research.scilifelab.se/andrej_alexeyenko/downloads/test_data/can.sig.go.txt",
Lowercase = 1, col.gene = 2, col.set = 3, gs.type = "fgs")

4.2.0.2.1 Uploading text file : Note that in the package the dataset can.sig.go has been saved as
Rdata so that it can be called directly via data(can.sig.go).
Uploading Rdata Object:

data(can.sig.go)
fgs.list <- import.gs(can.sig.go)

4.3 Preparing NET file

The network files can be imported via import.net(). It requires two columns in a TAB-delimited file so
that each line contains two node IDs connected by the given edge.

4.3.0.3 Examples : net.kegg is a network obtained by downloading the KEGG pathways as separate
KGML files, extracting from the latter all gene-gene links, and then merging the links into one global network,
which erased borders between the pathways. Like can.sig.go, in NEA render net.kegg can be directly used
as data(net.kegg) or as text file:

data(net.kegg)
net <- import.net(net.kegg)

4.3.0.3.1 Uploading Rdata Object:

## [1] "Network of 42491 edges between 4064 nodes..."

6



print(paste(names(net$links)[10], net$links[[10]], sep = ": "))

## [1] "abcc8: cacna1a" "abcc8: cacna1b" "abcc8: cacna1c" "abcc8: cacna1d"
## [5] "abcc8: cacna1e" "abcc8: cacna1g"

net <- import.net("http://research.scilifelab.se/andrej_alexeyenko/downloads/test_data/net.kegg.txt")

4.3.0.3.2 Uploading text file :

## [1] "Network of 42491 edges between 4064 nodes..."

We can expect that within-pathway connectivity would be higher within original pathways than between
them, i.e. overall in the network. This can be seen at the respective plot (Funcoup 3.0 network) in Figure 15.

We can see that the connectivity pattern differs from e.g. networks derived in pathway-ignorant way from
multi-facetted data integration STRING9 and merged. Net.merged is the network previously used by (Merid
SK et al., 2014). Briefly, this is largely (>90%) a FunCoup based network, i.e a network from Bayesian
integration of multiple literature and high-throughput data sources. Then this basic network was merged
with KEGG pathways, CORUM protein complexes, and PhosphoSite kinase-substrate links.

net.merged <- "http://research.scilifelab.se/andrej_alexeyenko/downloads/test_data/merged6_and_wir1_HC2"
net <- import.net(net.merged)

## [1] "Network of 971577 edges between 19027 nodes..."

4.4 Other Miscellaneous functions

Function save_gs_list() helps to save a collection of AGSs (such as ags.list) as a text file. The latter, can
serve an example of the file format or be submitted to the web site.

data(net.kegg)
net <- import.net(net.kegg)

## [1] "Network of 42491 edges between 4064 nodes..."

fgs.genes <- as_genes_fgs(net)
# save_gs_list(fgs.genes, File =
# '~/single_gene_ags.groups.tsv');

5 NEA-analysis

From the above described functions, we created inputs for AGS (FANTOM5.43samples.txt), FGS (can.sig.go)
and NET (net.kegg) and can now demonstrate using the main function nea.render.
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n1 <- nea.render(AGS = ags.list1, FGS = fgs.list, NET = net)

## [1] "Preparing input datasets:"
## [1] "Network: 4064 genes/proteins."
## [1] "FGS: 1293 genes in 34 groups."
## [1] "AGS: 854 genes in 43 groups..."
## [1] "Calculating N links expected by chance..."
## [1] "Rendering integer IDs..."
## user system elapsed
## 1.228 0.000 1.229
## [1] "Counting actual links..."
## user system elapsed
## 0.089 0.000 0.089
## [1] "Calculating statistics..."
## [1] "Done."

hist(n1$chi, breaks = 100)
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Figure 2: n1$chi - chi-square estimate

hist(n1$z, breaks = 100)

hist(n1$p, breaks = 100)

hist(n1$q, breaks = 100)

Note that the values of chi, p, and q are rank-invariant, i.e. unambiguously related to each other. In other
words, they differ only in terms of scale and density distributions. Consequtively, ranking enrichment scores
in the AGS-FGS pairs can be done by either of these values with the same result.
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Figure 3: n1$z- zscores
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Figure 4: NEA- pvalues
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Histogram of n1$q
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Figure 5: NEA-qvalues

In general purpose, exploratory analyses the statistical significance can be established by p- and q-values.
The latter is generally more correct, but the q-values are reliable only with sufficiently many (at least
300-500) AGS-FGS tests done at once. In case of fewer tests, another correction (e.g. Bonferroni) should be
applied.

However, using the NEA output for more complex downstream analyses, such as phenotype modeling, is
more challenging. The chi-squared statistic has two drawbacks from this perspective:

1) It is defined on the non-negative domain and hence cannot distinguish between enrichment and depletion.

2) It is not normally distributed and thus cannot be processed by statistical methods that employ least
squares estimation or otherwise expect Gaussian input (Pearson linear correlation, ANOVA, PCA, or
even survival analysis).

In order to address these problems, we recommend using as input to such modeling z-scores that are
calculated to AGS-FGS pairs from p-values of the chi-squared statistics. Negative signs are assigned to those
AGS-FGS pairs where the expected number of network edges exceeds the actual value (i.e. depletion). Thus,
the resulting z-score distribution should appear normal under true null. The latter is generally more correct,
but the q-values are reliable only with sufficiently many (at least 300-500) AGS-FGS tests done at once. In
case of fewer tests, another correction (e.g. Bonferroni) should be applied.

6 Binomial GSEA

ags.list2 <- samples2ags(fantom5.43samples, Ntop = 1000, method = "topnorm")
g1 <- gsea.render(AGS = ags.list2, FGS = fgs.list, Lowercase = 1,

ags.gene.col = 2, ags.group.col = 3, fgs.gene.col = 2, fgs.group.col = 3,
echo = 1, Ntotal = 20000, Parallelize = 1)
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## [1] "Preparing input datasets:"
## [1] "AGS: 15271 genes in 43 groups."
## [1] "Calculating overlap statistics..."

hist(log(g1$estimate), breaks = 100)

Histogram of log(g1$estimate)
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Figure 6: g1$estimate - an estimate of the odds ratio

hist(g1$n, breaks = 100)
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Figure 7: g1$n - number of ags genes that belongs to corresponding fgs

hist(g1$p, breaks = 100)

hist(g1$q, breaks = 100)

11



Histogram of g1$p
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Figure 8: g1$p - the p-value of the fishers.exact test
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Figure 9: g1$q - Adjusted p-values by “BH-method”
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7 Benchmarking and ROC curves

The package also contains functions connectivity(),topology2nd(), benchmark() and roc() which enable
evaluating and benchmarking alternative NETs using either standard or custom FGSs, as described in (Merid
SK et al., 2014). Briefly, the benchmark() consists of many test cases as there are FGS members in total
(multiple occurrences of the same genes in different FGS are treated separately). The procedure tests each
such gene for being an FGS member. The true positive or false negative result is assigned if the gene receives
an NEA score above or below a certain threshold, respectively. In parallel, randomly picked genes with
matching node degree are tested against the same FGS in order to estimate specificity via the false positive
versus true negative ratio. The counts of alternative test outcomes TP, TN, FP, and FN at variable NEA
thresholds are used for plotting ROC curves. The function can work in the parallel mode (Parallelize>1),
similarly to nea.render() above:

b0 <- benchmark(NET = net, GS = fgs.list, echo = 1, graph = TRUE,
na.replace = 0, mask = ".", minN = 0, coff.z = 1.965, coff.fdr = 0.1,
Parallelize = 1)

0 50 100 150 200

0
40

0
80

0
12

00

False predictions

Tr
ue

 p
re

di
ct

io
ns

O

1; n(V)=42491; n(E)=4064

Figure 10: ROC curve evaluating KEGG network (net.kegg)“

Note: The following lines of code takes longer time to calculate the actual links. Please make use of parallel
to increase the number of CPUs cores.

b1 <- NULL
for (mask in c("kegg_", "go_")) {

b1[[mask]] <- NULL
ref_list <- list(net.kegg = net.kegg, net.merged = net.merged)
for (file.net in c("net.kegg", "net.merged")) {

# a series of networks can be put here: c('net.kegg1',
# 'net.kegg2', 'net.kegg3') in ref_list
net <- import.net(ref_list[[file.net]], col.1 = 1, col.2 = 2,

Lowercase = 1, echo = 1)
b1[[mask]][[file.net]] <- benchmark(NET = net, GS = fgs.list,

echo = 1, graph = FALSE, na.replace = 0, mask = mask,
minN = 0, Parallelize = 3)
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roc(b1[["kegg_"]], coff.z = 2.57, main = "kegg_")
roc(b1[["go_"]], coff.z = 2.57, main = "go_")

}
}

Figure 11: ROC curves evaluating differential performance of net.kegg and net.merged in predicting KEGG
terms

The full description of the ROC approach to network benchmarking can be found in (Merid SK et al., 2014).
Note that this approach is very different from the trivial measurement of edge overlap between two networks
under a variable edge confidence threshold. Instead, we run multiple network enrichment tests in regard of
individual genes´ membership in different pathways.

True Predictions (correct pathway membership) are plotted vertically, False Predictions (wrong/unknown
membership) are plotted horizontally. As always with ROC curves, one should watch false positive (X-axis)
versus false negative (Y-axis) rates. Practically, the best network is the one with the highest ROC curve
elevation in the upper left corner of the plot, i.e. the one that, under a suitable siginifcant threshold has led to
most correct classification of true pathway members and conveyed least misleading information on false (or
yet unknown) membership.
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Figure 12: ROC curves evaluating differential performance of net.kegg and net.merged in predicting GO
terms
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8 Estimating topological properties of used networks

8.1 Scale-free property

Most of the known networks, especially the biological ones are scale-free. This means that the distribution of
node degrees (also called node connectivity values or simply the numbers of edges for each node) follows the
power law. Practically, it is expressed as “few nodes have many edges, whereas many nodes have few edges”.
After a log-log transformation, this dependency appears as a straight line. Knowing this property is especially
important because in the current package the binomial test of network enrichment expects scale-freeness in
the analyzed network. If a particular network seems too different (though some deviations from the power
law occur in almost every real-world network), then we would recommend using other tools, such as those
based on full network randomization (McCormack et al., 2013 , Merid et al., 2014).

The package contains a utility function connectivity() for quick visual inspection of this property. The
function receives an input network (either a text file or an R list imported with import.net()) and plots on
the log-log scale its node degree distribution summarized into few bins. After the log-log transformation we
expect the linear fit to be matching the bin top points. The better the fit, the more scale-free is the network.

connectivityfile <- system.file("extdata", "Connectivity.FC1_full",
package = "NEArender")

connect <- connectivity(connectivityfile)

Connectivity plot
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Figure 13: Node degree distribution

For example out of the nine networks presented in Figure 16, we can see that FunCoup 3.0 and KI-
NASE2SUBSTRATE were likely the most and the least scale-free, respectively. Although none of the nine
networks followed the power law perfectly (the red lines indicate ideal distributions given network size and
connectivity range). The origin and descriptions of these networks can be found at https://www.evinet.org/.
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8.2 Second order topology

Similarly to the property of scale-freeness, estimation of network enrichment in the current package might
depend on non-randomness of node degree distribution across network edges.

For example, it was shown that highly connected nodes tend to ‘avoid’ each other in a yeast network, i.e. such
connect with each other less frequently than it would be expected by chance (Maslov and Sneppen, 2002).
We, however, can often see an opposite tendency Figure 15. In order to visualize and evaluate this property,
one can employ function topology2nd in a fashion similar to connectivity described above:

topology2nd(NET = connectivityfile, Lowercase = 1, col.1 = 1,
col.2 = 2)
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Figure 14: Second order topology

8.2.1 Second order topology observed in nine example biological networks

From plot, networks FunCoup 3.0 and TF_and_targets appear the best and the worst in terms of higher
order topological bias. In FunCoup 3.0 only the most connected nodes stand for the bias, which would affect
NEA scores of AGS-FGS pairs only if such nodes are unevenly distributed across the gene sets. The much
more generalized bias in TF_and_targets (or, similarly, in KINASE2SUBSTRATE) is likely due to the
special nature of such networks: they contain regulators and regulated proteins as two distinct node classes.
In case of a strong bias discovered in a certain network, it is important to consider if it should be removed or
not from the perspective of the biological study and its purposes (indeed, the answer is not always upfront).
If the bias still has to be removed, one can use a special algorithm in the C++ tool by (McCormack et al.,
2013).

8.2.2 Node degree distributions in nine example biological networks
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Figure 15: Second order topology observed in nine example biological networks
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Figure 16: Node degree distributions in nine example biological networks.
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