The gWidgets2 package

John Verzani

February 27, 2013

The gWidgets2 provides a programming interface for writing graphical user interfaces
within R. The package depends on one of several different interfaces to underlying toolkit
libraries: tcltk, RGtk2, or Qt. EI The package provides many of the common features of
the above toolkits using more or less standard R idioms, making it fairly easy for the R
user to quickly begin building user interfaces.

The gWidgets2 package is a rewrite of the gWidgets package. EI Most changes are not
visible to the end user, but there were significant enough ones that the package name was
changed. The goals of the rewrite included:

* simplifying of the code base using the powerful combination of devtools and GitHub
(github.com/jverzani) making it much easier to document, test, and deploy
changes in the underlying packages;

* replacing S4 methods with reference class methods resulting in a cleaner code base;
* better consistency across toolkits;

* speed improvements; and

* better documentation.

For the most part this has been achieved. Most gWidgets scripts run unchanged, save
for, perhaps, a few minor adjustments. Some others will be problematic. (To make more
cross-toolkit, some of the drag and drop features of gWidgetsRGtk2 have been dropped.)

As with the original package, gWidgets2 provides the abstract interface. A toolkit
package (one of gWidgets2RGtk2, gWidgets2tcltk, gWidgets2Qt) provides the link to

I'A related — but independent — package, gWidgetsWWW?2, provides an interface for programming web
GUIs.

>The gWidgets package is documented in a 2007 R News article “An Introduction to gWidgets” and the
book Programming Graphical User Interfaces in R, by Lawrence and Verzani, CRC Press.

1

github.com/jverzani

806 [x] t-test

N t-test t-test
x|
alternative two.sided i
mufo atematve atematve [wosided ¢
paired [] mu C] me 10
it ()
mnf.level‘ .95 paired [} paired
conflevel G conf.level
values...
[aes.

Figure 1: Screenshots of the same gWidgets2 GUI using RGtk2, tcltk, and gtbase.

the underlying R toolkit that binds to the graphical toolkit. Typically, the only issues with
installation arise from the underlying toolkits, which often require separate downloads. E|
The devtools package’s install_github function can be used to install the develop-
ment versions from GitHub.

1 Requisite “Hello World”’ example

We begin with a simple example to illustrate what a script looks like:

library (gWidgets2)

options (guiToolkit=)

containers

win <- gwindow (, visible=FALSE)

gp <- gvbox (container=win)

control

btn <- gbutton (, container=gp)

interactivity

addHandlerClicked (btn, handler=function(h,...) {
galert (, parent = win) # a dialog call

I3

a method call
visible (win) <- TRUE

The above will produce a titled window with a button. When the user clicks the button,
a dialog will appear with a very important message.

3Well, not always. The teltk is a base package and the underlying libraries are usually available, the
RGtk2 and Qt packages make an effort to install the underlying libraries.

The first two lines load the package and force the choice of toolkit. If the second line
is not given, the user is prompted for a toolkit choice, as needed.

The structure of programming in gWidgets2 is mostly illustrated above. The basic
components — containers, controls, and dialogs — are defined by constructors. In the above
we see the window constructor (gwindow), a vertical box container constructor (gvbox),
a button widget constructor (gbutton) and a dialog constructor (galert).

The top level window constructor has two arguments specified, one for the title, the
other to suppress the initial drawing. The latter allows the toolkit to compute the requested
size before drawing, which can make the initial appearance seem faster.

The box container and button constructors have the argument container. This is
used to define the widget hierarchy and layout of the GUI. The dialog has the similar
parent argument. This argument does not imply the child is rendered within the parent,
as container does, but rather indicates a relationship. In this case, the alert dialog will
be drawn relative to the parent window.

Except for dialogs, the constructors return objects which have S3 methods defined for
them. Table|l|lists most of the new generics defined by the package. ﬂ The last line shows
the visible assignment method. For top-level windows, this can be used to either hide
or make the window visible. The most common method is svalue, which is defined to
return or set the most basic property of a widget.

The interactivity of gWidgets2’s GUIs is introduced by event handlers. Handlers for
the most common event can be assigned during the construction of the object, but more
commonly handlers are done after the layout of the GUI is finished, as above.

The above handler simply calls the galert dialog to create a transient message.

There are other examples available in the demos for the toolkit packages, e.g., demo ("gWidget s2RGtk

2 Overview

The basic example above shows the main areas of gWidgets2. Here we give a bit more
detail.

2.1 Containers

A GUI is laid out by nesting child components within containers, which in turn may be
nested within other containers. All the children sit within some top-level window. In

4Constructors return reference class objects, so they also have reference class methods defined. There are
a few cases where these are standardized across toolkits, for example, the set _borderwidth argument
for box containers. Otherwise, though the reference class methods may be used directly, doing so will often
break portability of the code to other toolkits.

Method Description

svalue<- set main property

enabled<- adjustif widget is sensitive to user input
visible<- adjust “visibility” of widget
focus<- give widget keyboard focus
editable<~ adjustif widget can be edited
font<— adjust font of widget

tab<- store property in widget’s environment
size<~- adjust size of widget

tooltip<- add tooltip to widget

dispose dispose of widget or part of widget
delete delete child from parent container

Table 1: Generic methods defined in the gWidgets2 package to manipulate the state of the
GUI objects. Most “setters” have corresponding “getter” versions.

gWidgets2, top-level windows are constructed with gwindow.

The most basic containers are the “box containers,” ggroup (and its shortcut gvbox),
gframe, and gexpandgroup). Box containers pack in their child components from left
to right or top to bottom. The packing of each child can be adjusted through specifications
of expand (to have the allocated space grow if the window size grows), £i 11 (to have the
child widget grow to fill the allocated space), or anchor (to align the child widget within
the allocated space). The spacing between children is controlled by the main property and
border spacing, by the aforementioned reference class method add borderwidth.

Other containers are

glayout A grid layout container
gformlayout A special case of a grid layout container for quickly building up forms.

gpanedgroup A container to hold two children, separated by a sash. This is used to allow
the user to allocate the allotted space.

gnotebook A notebook widget uses tabs to organized different “pages” from which the
user can easily select.

gstackwidget Like gnotebook, though no tabs are presented so selection is done pro-
grammatically.

gbasicdialog A dialog that can be used to create a modal window

4

The containers can be nested to build up a hierarchy. This examples shows how nested
groups can be used to create a button group at the bottom of a page:

Some filler

lorem <-

##

win <- gwindow ()
g <- gvbox(container=win)
gSset_borderwidth (10L)

##

txt <- gtext(lorem, container=g, # text widget
expand=TRUE, fill=TRUE)

##

bg <- ggroup (cont=qg)
addSpring (bg)

gbutton (, container=bg,
handler=function (h, ...) dispose(win))
gbutton (, container=bg, handler=function(h,...) {
gmessage (, parent=win)

3]

In the above, we have nested box containers, g a vertical one, and bg a horizontal one
(The gvbox call is a simpler-to-type version of ggroup with horizontal=FALSE.)
The set borderwidth reference method call is not essential, but does give some extra
space around the edges of g. The svalue method is used to set padding between children,
this call sets the border within the box. The spring is added to bg container to right justify
the buttons. When buttons are packed into box containers, they expand to fill the direction
orthogonal to the direction of packing. As such, it is best to put buttons in a horizontal box
container, as done above.

2.2 Widgets

Containers are needed for organizing the GUI, but more important are the controls that
allow the user to enter information into a GUI or get information out of a GUI.
A summary of the basic controls is given in Table[2]
The basic use is straightforward. A widget has some data that is needed to configure it,
and most widgets have common arguments to specify the parent container (container)
and a handler for the most common event (handler, which just maps to addHandlerChanged).

Type Constructor Description

labels glabel label widget
gstatusbar messages in page bottom
galert transient messages
ghtml if supported (Qt)

action gbutton button action
gmenu menu bar and popup menus
gtoolbar tool bar

selection gcheckbox Boolean
gradio one of many
gcheckboxgroup one or more of many
gcombobox one of many
gtable one, or one or more of many
gslider slide to select from range
gspinbutton click to select from range
gcalendar select date
gfilebrowse select file, directory

Text gedit single line text
gtext multi line text

Data gtable select from rectangular data
gtree select from hierarchical data
gdf edit a data frame

Graphics ggraphics graphic device
gimage image file display

Table 2: List of basic controls in gWidgets2

The following example shows a GUI that could be used to collect arguments for a 7-test
(Figure[I). We use the convenient gformlayout container, new to gWidgets2.

win <- gwindow (, visible=FALSE)
g <- gvbox (container=win)
gSset_borderwidth (10L)

4
flyt <- gformlayout (container=g, expand=TRUE)
4
gedit ("", initial.msg= v
label= , container=flyt)
gcombobox (¢ (. /)
label= , container=flyt)
gedit (, coerce.with=as.numeric,
label= , container=flyt)
gcheckbox (""", checked=FALSE,
label= , container=flyt)
gslider (from=0.5, to = 1.0, by=.01, value=0.95,
label= , container=flyt)
#4#

bg <- ggroup (container=q)
addSpring (bg)

gbutton (, container=bg, handler=function(h,...) {
print (svalue (flyt)) # replace me..

b

addSpring (qg) # better for Ot

¥

size (win) <- (400, 250)
visible (win) <- TRUE

We see that some arguments are specific to the widget. For example, initial.msg
to use an initial message for gedit; coerce.with to specify a function to coerce a
character string for gedit (and others) or checked to set the initial state for gcheckbox.

The expand argument and 1abel argument do not belong to the widget constructor,
but are passed through . . . to the add method for ggroup and gformlayout. These
control how the child is laid out within the parent container. For gformlayout, the
label argument also names the value returned by its svalue method.

The above, is just the part of the GUI that collects the user input. One would need to
write something intelligent to do with the values. Though, if the labels are chosen well, this

7

Method Description

addHandlerChanged most typical event

addHandlerClicked click event

addHandlerDoubleclick double-click event

addHandlerSelect Select or activate event (typically the change event)
addHandlerSelectionChanged Selection changes

addHandlerFocus widget gets keyboard focus

addHandlerBlur widget loses keyboard focus
addHandlerKeystroke text widget has keystroke

addHandler add callback for toolkit signal

Table 3: Methods to bind callbacks to events in gWidgets2

can be as simple as using something like do.call (FUN, svalue (form_layout_object)).

2.3 Event handlers

GUIs become interactive through the use of event handlers. The basic idea being the user
initiates an event through a control, the control then emits a signal, and any listeners for the
signal are called. In gWidgets2 there are various “addHandlerXXX” methods to attach
a callback (a handler) for different events a widget may signal. The most basic event is
bound to through addHandlerChanged, which for many widgets is an alias for a more
aptly named event. (For example, addHandlerClicked for the button widget.) Most
others are listed in Table @ (though some are not, such as the different ones for column
clicks in the table widgets).

The callbacks all have the same signature, (h, ...).The main argumentis h, a list
with components ob j to refer to the emitter of the signal and act ion, an optional user-
supplied value to parameterize the callback. Some events pass back more information. For
example, the keystroke handler passes back key information through h. The . .. values
are used by some toolkits to pass back information given by the toolkit about the signal.
This may be of interest to some, but using it breaks portability of gWidgets2 code across
toolkits.

The addHandlerXXX methods return an ID that can be used to disconnect the call-
back or temporarily block the callback. See the help pages for removeHandler,blockHandler,
and unblockHandler. All events can be removed or temporarily blocked through
removeHandlers, blockHandlers, and unblockHandlers.

A simple example of using a handler might be to have the sensitivity of a button depend
on whether a user has made a selection:

win <- gwindow (, visible=FALSE)
g <- gvbox(container=win)

f <- gframe (, container=qg)

cb <- gcheckboxgroup (c (0

container=f)
bg <- ggroup (cont=g); addSpring (bg)

b <- gbutton , container=bqg)

enabled (b) <- FALSE

##

addHandlerChanged (cb, handler=function (h,...) {

enabled (b) <- length (svalue (hS$Sobj)) > 0

H
#4#
visible (win) <- TRUE

2.4 Dialogs

The package provides a few modal dialogs: useful and familiar means to display or collect
information. These include:

gmessage present a modal message

galert present a non-modal, transient message
geonfirm allows user to confirm an action to be taken
ginput collect single line of text input from user
gbasicdialog container to hold modal dialog

gfile Select a file

Modal dialogs disrupt the flow of a user’s interaction through a GUI, so are used spar-
ingly. This also prevents them from returning a meaningful object to manipulate, as this
can only happen after the dialog is closed. As such, they return values, such as a Boolean
for gconfirm and the text value for ginput.

9

This example asks for confirmation before removing an object:

if (gconfirm (c (’)))
rm ()

3 Some more examples

3.1 Selecting packages to load/unload

This example creates a GUI to load or unload a package. The main interface uses gcheckboxgroup
for the selection of none, one or more from many. The argument use.table=TRUE is
specified to use a layout with checkboxes, as otherwise scrollbars will not be provided and
long lists need a lot of vertical or horizontal screen space.
We begin with some text to explain the GUI.

about <- "

A simple GUI to simplify the loading and unloading of packages.

This GUI uses ~gcheckboxgroup , with its "use.table’ argument, to
present the user with familiar checkboxes to indicate selection.

Some indexing jujitsu is needed to pull out which value is checked to
trigger the event.

The function installed.packages will search a users installation for all installed
packages. This call can be slow, so we store the results here as a global variable. In a
more complicated setup, one would use a property, say, of a reference class to avoid name
collision.

installed <- installed.packages () ## matrix
installed_packages <- installed][,]

This helper function checks the loaded namespaces against the installed packages to
determine what is loaded.

package_status <- function() {
Return if package is loaded
installed_packages %in% loadedNamespaces ()

}

10

We begin with our main layout. Here is a common idiom — creating a top-level win-
dow with a box container to hold child components. The set borderwidth reference
method is used to give a little breathing room.

w <- gwindow (, visible=FALSE)
g <- gvbox (cont=w)
gSset_borderwidth (10L)

We use the checkbox group to show the data. The items to select from are specified
first, then the checked argument is fed a logical variable to indicate what should be
initially checked. We use the expand=TRUE argument here tso that the widget gets the
maximum space possible, should the window be resized.

a <- package_status /()

tbl <- gcheckboxgroup (installed_packages, checked=package_status(),
use.table=TRUE,
expand=TRUE, container=qg)

The following is a standard idiom to create a button group. This button simply shows
the information defined above in about. The specification of parent=w below makes
the window w1 transient for the toplevel window w. That means, should w be closed first,
w1l will also close and further, the initial positioning of w1l depends on that of w.

bg <- ggroup (cont=qg)
addSpring (bg)
gbutton (, container=bg, handler=function(...) {
wl <- gwindow (, parent=w, visible=FALSE)
g <—- gvbox (container=wl); gS$Sset_borderwidth (10)
glabel (about, container=g, expand=TRUE)
gseparator (container=q)
bg <- ggroup (cont=qg)
addsSpring (bg)
gbutton (, cont=bg, handler=function(h,...) {
dispose (wl)

3]

visible (wl) <- TRUE

3]

Object of class GButton

11

Finally, we make the toplevel window visible:
visible (w) <— TRUE

To add interactivity to our GUI we need some means to synchronize the display of the
table with the state of the loaded packages. Below, we block all handlers before updating
the selected values, as otherwise this may trigger the change handler to be called.

update_tbl <- function(...) {
blockHandlers (tbl)
on.exit (unblockHandlers (tbl))

svalue (tbl, index=TRUE) <- package_status/()

}

Finally, we add the handler that is called when the selected values change. There is
no means to get what checkbox actually triggered the change, so we compute that from
the selected values and the actual installed packages. The setdiff function comes in
handy here. The basic flow of this handler is clear: check which value changed. If it was
a deletion, detach the package, otherwise load the package. Afterwards, update the table.

addHandlerChanged (tbl, handler=function(h, ...) {
ind <- svalue (h$obj, index=TRUE)
old_ind <- which (package_status())

if (length (x <- setdiff (old_ind, ind))) {
message (, installed packages[x])
pkg <- sprintf (, installed_packages|[x])
detach (pkg, unload=TRUE, character.only=TRUE)
} else if (length(x <- setdiff (ind, old_ind))) {
require (installed_packages[x], character.only=TRUE)
}

update_tbl ()

H
One last comment, this GUI is similar to one in RStudio, but is not nearly as nice as

that. There, more information per line (a package description and an “uninstall package”
icon) is included. Though one could add in a description here, say by pasting together

12

different text to display in the checkbox labels, it wouldn’t be possible to also add the
uninstall feature. The package isn’t as powerful as the underlying toolkits, though as you
can see the creation of this table along with the interaction to retrieve and set its selected
values is really quite simple, especially when compared to what this takes with some of
the underlying toolkits.

3.2 Using a table to display information

A basic feature of many GUIs is the use of tables to display information. The gtable
constructor creates an object that has data frame methods that can be used to manipulate
the object. For example, 1length, dim, and [. As well, in this example we see how the
visible method can be used to assign which rows are visible.

We begin by describing the GUL

about <-
The data to be displayed here is returned by o1d.packages, of which we wish just
3 columns. Before calling that function, we programmatically set a mirror. This bit can be

skipped.

repos <- getOption ()

repos |] <-

options (repos = repos)

#

pkg <- old.packages () [, c(' ')]

How we begin our basic GUI. First a top-level window:
w <— gwindow (, visible=FALSE)
g <- gvbox(container=w)

gSset_borderwidth (10)

Our main interface consists of a gedit instance for the user to filter the table by, and
a gtable widget to dispaly our tabular data.

fg <- ggroup (container=q)
glabel (, container=fq)

13

Object of class GLabel

fltr <- gedit ("", initial.msg= .
container=£fqg)

tbl <- gtable (pkg, chosen.col=1, multiple=TRUE,
container=g, expand=TRUE)

Our button group is fairly standard.

bg <- ggroup (container=qg); addSpring (bg)
gbutton (, container=bg, handler=function(h,...) {
wl <- gwindow (, parent=w, visible=FALSE)
g <- gvbox (container=wl); gSset_borderwidth (10)
glabel (about, container=g, expand=TRUE)
bg <- ggroup (container=qg); addSpring (bg)
gbutton (, container=bg,
handler=function(h,...) dispose (wl))
visible (wl) <- TRUE

3]

Object of class GButton

Our update button will only be enabled if the user has a selection, hence we set it
intially to be disabled. The handler below simply installs the selected packages, then
updates the display.

update_btn <- gbutton , container=bg,
handler=function (h, ...) {
pkgs <- svalue (tbl)
if (length (pkgs) == 0) return()

sapply (pkgs, install.packages)
update pkg, update table, clear filter
thl[] <- pkg <<-
old.packages () [, c(P p)]
svalue (fltr) <-

3]

enabled (update_btn) <- FALSE

14

¥
visible (w) <— TRUE

To enable filtering through the gedit widget, we connect to its keystroke event a
handler that uses grepl to see which packages the user wishes to be displayed. The
visible assignment method makes this very easy to do.

addHandlerKeystroke (fltr, handler=function(h,...) {
regexp <- svalue (h$ob7j)
if (nchar (regexp) > 0 && regexp !=) {

ind <- grepl (regexp, pkgl, 1)
visible (tbl) <- ind
} else {
visible (tbl) <- rep (TRUE, nrow (pkg))
}
19

Finally, we adjust the update button to be enabled when there is a selection. The
addHandlerSelectionChanged method makes listening for changes to the selec-
tion easy. The table widget also has an addHandlerChanged method, which listens
for when a use activates an item, typically by double clicking or through the return key.

addHandlerSelectionChanged (tbl, handler=function (h,...) {
enabled (update_btn) <- length (svalue (h$obj))

3]

15

	Requisite ``Hello World'' example
	Overview
	Containers
	Widgets
	Event handlers
	Dialogs

	Some more examples
	Selecting packages to load/unload
	Using a table to display information

