LIBCGRAPH(3) LIBCGRAPH(3)

NAME
libcgraph — abstract graph library

SYNOPSIS
#include <graphviz/cgraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge _t;
Agdesc _t;
Agdisc_t;
Agsym_t;
GRAPHS
Agraph_t *agopen(chaname, Agdesc_t kind, Agdisc_t *disc);
int agclose(Agraph_1g);
Agraph_t *agread@id *channel, Agdisc_t *);
void agreadline(intine_no);
void agsetfile(chatfile_name);
Agraph_t *agconcat(Agraph*g, void *channel, Agdisc_t *disc)
int agwrite(Agraph_tg, void *channel);
int agnnodes(Agraph *g),agnedges(Agraph_t *g);
int agisdirected(Agraph *tg),agisundirected(Agraph_t * g),agisstrict(Agraph_t * g), ag
SUBGRAPHS
Agraph_t *agsubg(Agraph*g, char *name, int createflag);
Agraph_t *agidsubg(Agraph *tg, unsigned long id, int cflag);

Agraph_t *agfstsubg(Agraph*g), agnxtsubg(Agraph_t *);
Agraph_t *agparent(Agraph*g);
int agdelsubg(Agraph *tg, Agraph_t * sub); /* same as agclose() */

NODES
Agnode _t *agnode(Agraph*g, char *name, int createflag);
Agnode _t *agidnode(Agraph*t), ulong id, int createflag);
Agnode _t *agsubnode(Agraph*d, Agnode_t *n, int createflag);
Agnode _t *agfstnode(Agraph*g);
Agnode _t *agnxtnode(Agraph*g, Agnode_t *n);
Agnode _t *agprvnode(Agraph*dg, Agnode_t *n);
Agnode _t *aglstnode(Agraph*g);

int agdelnode(Agraph *g, Agnode_t *n);
int agdgree(Agnode_t *n, int use_inedges, int use_outedges);
EDGES
Agedge _t *agedge(Agraph_tf Agnode_t *t, Agnode_t *h, char *name, int createflag);
Agedge _t *agidedge(Agraph* g, Agnode_t * t, Agnode_t * h, unsigned long id, int createflag);

Agedge _t *agsubedge(Agraphtg, Agedge_t *e, int createflag);
Agnode _t *aghead(Agedge*e), *agtail(Agedge_t *e);

Agedge t *agfstedge(Agraph_dff Agnode_t *n);

Agedge _t *agnxtedge(Agraph_gff Agedge_t *e, Agnode_t *n);
Agedge _t *agfstin(Agraph_t, Agnode_t *n);

Agedge _t *agnxtin(Agraph_tY, Agedge_t *e);

Agedge _t *agfstout(Agraph_t, Agnode_t *n);

Agedge _t *agnxtout(Agraph_d, Agedge_t *e);

30 JULY 2007 1

LIBCGRAPH(3) LIBCGRAPH(3)

int agdeledge(Agraph*g, Agedge _t *e);
STRING ATTRIBUTES
Agsym_t *a@ttr(Agraph_t *g, int kind, char *name, char *value);
Agsym_t *a@ttrsym(void *obj, char *name);
Agsym_t *agnxtattr(Agraph_*g, int kind, Agsym_t *attr);
char *agget(eid *obj, char *name);
char *agxget(wid *obj, Agsym_t *sym);
int agset(wvid *obj, char *name, char *value);
int agxset(wid *obj, Agsym_t *sym, char *value);
int agsafeset@id *obj, char *name, char *value, char *def);
RECORDS
void *agbindrec(wid *obj, char *name, unsigned int size, vaoto_front);
Agrec_t *aggetrec(@id *obj, char *name, int mee_to_front);
int agdelrec(Agraph_*g, void *obj, char *name);
int agcoypyattr(void *, void *);
void aginit(Agraph_t g, int kind, char *rec_name, int rec_size, intvado_front);
void agclean(Agraph_*g, int kind, char *rec_name);
CALLB ACKS

Agcbdisc_t *agpopdisc(Agraph*g);
void agpushdisc(Agraph *g, Agcbdisc_t *disc);
void agmethod(Agraph_*g, void *obj, Agcbdisc_t *disc, int initflag);

MEMORY
void *agalloc(Agraph_t *g, size_t request);
void *agrealloc(Agraph_tg, void *ptr, Sze_t oldsize, size_t newsize);
void agfree(Agraph_tg, void *ptr);
STRINGS
char *agstrdup(Agraph *t char *);
char *agstrdup_html(Agraph*f char *);
int aghtmlstr(char);
char *agstrbind(Agraph_*tg, char *);
int strfree(Agraph_t, char *);
char *agcanonStr(chay;
char *agstrcanon(chdr char *);

GENERIC OBJECTS

Agraph_t *agraphof(@id*);

Agraph_t *agroot(wid*);

int agcontains(Agraph_t¥oid*);

char *agnameof(@id*);

void agdelete(Agraph *g, void *obj);

int agobjkind(wid *obj);

Agrec_t *AGDATA (void *obj);

ulong AGID(void *obj);

int AGTYPE(void *obj);
DESCRIPTION

Libcgraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphsare composed of nodes, edges, and nested subgraphs. These graph objects maydak attrib

30 JULY 2007 2

LIBCGRAPH(3) LIBCGRAPH(3)

with string name-value pairs and programmer-defined records (see Attributes).
All of Libcgraph’s dobal symbols hae te prefixag (case varying).

GRAPH AND SUBGRAPHS
A “‘main” or “root” graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)
and their attribtes. Objectsnay be named by unique strings or by 32-bit IDs.

agopencreates a e graph with the gien name and kind. (Graph kinds a#gdirected, Agundirected,
Agstrictdirected, and Agstrictundirected. A strict graph cannot ke nulti-edges or self-arcs.agclose
deletes a graph, freeing its associated storagesad agwrite, and agconcatperform file I/O using the
graph file language described belagread constructs a e graph whileagconcatmeiges the file con-
tents with a presasting graph. Though I/O methods may beroidden, the default is that the channel
argument is a stdio FILE pointemgsetfileandagreadline are helper functions that simply set the current
file name and input line number for subsequent error reporting.

agsubgfinds or creates a subgraph by namenew subgraph is is initially empty and is of the same kind
as its parent. Nested subgraph trees may be creatsdbgraph$ rame is only interpreted rele#i © its
parent. Aprogram can scan subgraphs undewarggraph usingagfstsubgand agnxtsubgA subgraph is
deleted withagdelsubg(or agclos8.

By default, nodes are stored in ordered sets for efficient random access to insert, find, and delete nodes.
The edges of a node are also stored in ordered sets. The sets are maintained internally as splay tree dictio-
naries using Phong &t library.

agnnodes agnedges and agdegreereturn the sizes of node and edge sets of a graplke.agdegree
returns the size of the edge set of a nodes, and takes flags to select in-edges, out-edges, or both.

An Agdisc_tdefines callbacks to bevioked by libcgraph when initializing, modifying, or finalizing graph
objects. (Casualsers can ignore the following.) Disciplines asptkon a stack. Libcgraph automatically
calls the methods on the stack, topvdo Callbacksare installed withagpushdis¢ uninstalled with
agpopdisc and can be held pending or releasedagaallbacks

(Casual users may ignore the faling. WhenLibcgraph is compiled with Vmalloc (which is not the
default), each graph has its own heap. Programmers may allocate application-dependent data within the
same heap as the rest of the graph. Thargdge is that a graph can be deleted by atomically freeing its
entire heap without scanning each individual node and edge.

NODES
A node is created by giving a unique string name or programmer defined 32-bit ID, and is represented by a
unique internal object. (Node equality can checked by pointer comparison.)

agnodesearches in a graph or subgraph for a node with trem game, and returns it if found. If not
found, if createflagis boolean true a menode is created and returned, otherwise a nil pointer is returned.
agidnodeallows a programmer to specify the node by a unique 32-bitaliBubnodeperforms a similar
operation on an existing node and a subgragistnodeandagnxtnodescan node listsagprvnode and
aglstnodeare symmetric it scan backerd. Thedefault sequence is order of creation (object timestamp.)
agdelnoderemoves a rode from a graph or subgraph.

EDGES
An abstract edge has avendpoint nodes called tail and head where the all outedges of the samevede ha
it as the tail value and similarly all inedges/da as he head. In an undirected graph, head and tail are
interchangble. Ifa gaph has multi-edges between the same pair of nodes, the ¢dgg’name behaes
as a secondaryely agedgesearches in a graph of subgraph for an edge betweenvéheagdpoints (with
an optional multi-edge selector name) and returns it if fouDtherwise, ifcreateflagis boolean true, a
new edge is created and returned: otherwise a nil pointer is returned. natheis NULL, then an anon
mous internal value is generatedjidedgeallows a programmer to create an edge hwngi its unique
32-bit ID. agfstin, agnxtint, agfstout, and agnxtout visit directed in- and out- edge lists, and ordinarily
apply only in directed graphsagfstedgeand agnxtedgevisit all edges incident to a nodegtail and
agheadget the endpoint of an edge.

30 JULY 2007 3

LIBCGRAPH(3) LIBCGRAPH(3)

INTERNAL ATTRIBUTES
Programmedefined values may be dynamically attached to graphs, subgraphs, nodes, andSadges.
values are either uninterpreted binary records (for implementing efficient algorithms) or character string
data (for I/O).

STRING ATTRIBUTES
String attributes are handled automatically in reading and writing graphAilgsing attribute is identified
by name and by an internal symbol table enkgsym_1) created by LibcgraphAttributes of nodes,
edges, and graphs (with their subgraphskhaparate namespaces. The contents gkgsym_tis listed
below, followed by primitves to gperate on string attributes.

typedef struct Agsym_s { /* symbol in one of the abalctionaries */

Dtlink_t link;

char *name; /* attribute’s nrame */

char *defal; /* its default value for initialization */

int id; [* its index in attr[] */

unsigned charkind; [* referent object type */

unsigned char fid; /*immutable value */
}Agsym_t;

agattr creates or looks up attrites. kind may be AGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of thandind and name. Otherwise, if the
attribute already exists, its default for creatingvrabjects is set to the gn value; if it does not exist, a
new attribute is created with the\gin default, and the default is applied to all pre-existing objects of the
given kind. If g is NIL, the default is set for all graphs created subsequeadigttrsym is a helper function
that looks up an attribute for a graph objeetgias an egument. agnxtattr permits traersing the list of
attributes of a gien type. IfNIL is passed as angament it gets the first attribute, otherwise it returns the
next one in succession or returNg_ at the end of the listaggetandagsetallow fetching and updating a
string attribute for an object taking the attribute name asgament.agxgetandagxsetdo this ut with an
attribute symbol table entry as an argument (toidithe cost of the string lookupyagsafesets a con-
venience function that ensures theegi dtribute is declared before setting it locally on an object.

STRINGS
Libcgraph performs itswan storage management of strings as reference-counted strings. The caller does
not need to dynamically allocate storage.

agstrdup returns a pointer to a reference-countedycofpthe agument string, creating one if necessary
agstrbind returns a pointer to a reference-counted string if it exists, or NULL if Albtuses of cgraph
strings need to be freed usiagstrfree in order to correctly maintain the reference count.

agcanonStrreturns a pointer to aevsion of the input string canonicalized for output for later re-parsing.
This includes quoting special characters aegMords. It uses its own internabffer, so he value will be
lost on the next call tagcanonStr agstrcanonis an unsafe version egcanonStr, in which the applica-
tion passes in auffer as the second argument. Note that tfeebmay not be used; if the input string is in
canonical form, the function will just return a pointer to it.

The cgraph parser handles HTMLdilgrings. These should be indistinguishable from other strings for
most purposes.olcreate an HTML-lile gring, useagstrdup_html. The aghtmlstr function can be used to
query if a string is an ordinary string or an HTMLdilring.

RECORDS
Uninterpreted records may be attached to graphs, subgraphs, nodes, and edfieieriblopérations on
values such as marks, weights, counts, and pointers needed by algoAghptisation programmers define
the fields of these records, butyheust be declared with a common header as showmbelo

typedef struct Agrec_s {
Agrec _t header;

30 JULY 2007 4

LIBCGRAPH(3) LIBCGRAPH(3)

[* programmer-defined fields follo*/
}Agrec t;

Records are created and managed by Libcgraph. A programmer must explicitly attach them to the objects in
a gaph, either to individual objects one at a timeaghindrec, or to dl the objects of the same class in a
graph viaaginit. The name amgument a record distinguishes various types of records, and is programmer
defined (Libcgraph reserves the prefag). If size is 0, the call tagbindrecis simply a lookup.agdelrec

is the deletes records one at a tinagicleandoes the same for all objects of the same class in an entire
graph.

Internally records are maintained in circular lewk lists attached to graph objeci® dlow referencing
application-dependent data without function calls or search, Libcgraph allows setting and locking the list
pointer of a graph, node, or edge on a particular record. This pointer can be obtained with the macro
AGDATA(obj). A cast, generally within a macro or inline function, is usually applied teecothe list

pointer to an appropriate programmer-defined type.

To oontrol the setting of this pointerthe move to front flag may be AG_MTF_FALSE,
AG_MTF_SOFT, or AG_MTF_HARD accordingly The AG_MTF_SOFT field is only a hint that
decreases verhead in subsequent calls afjgetre¢ AG_MTF_HARD guarantees that a lockas
obtained. © release locks, us&G_MTF_SOFT or AG_MTF_FALSE. Use of this feature implies coop-
eration or at least isolation from other functions also using the-toefront corvention.

DISCIPLINES
(The folloving is not intended for casual usersrogrammedefined disciplines customize certain
resources- ID hamespace, memangd 1/O - needed by LibcgraptA discipline struct (or NIL) is passed at
graph creation time.

struct Agdisc_s { [* uses dscipline */
Agmemdisc_t *mem;
Agiddisc_t *id,;
Agiodisc_t *io;

H

A default discipline is supplied when NIL isvgh for ary of these fields.

An ID allocator discipline allows a client to control assignment of IDs (uninterpreted 32ibésy to
objects, and possibly fhaothey are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open)(Agraph_t*g); /* associated with a graph */
int (*map)(wid *state, int objtype, char *stulong *id, int createflag);
int (*alloc)(void *state, int objtype, ulong id);

void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(wid *state);

}s

open permits the ID discipline to initialize yadata structures that maintains per individual grafib.
return value is then passed as the first argument to all subsequent ID manager calls.

alloc informs the ID manager that Libcgraph is attempting to create an object with a specific IBaghat w
given by a dient. ThelD manager should return THE (nonzero) if the ID can be allocated, &LSE

30 JULY 2007 5

LIBCGRAPH(3) LIBCGRAPH(3)

(which aborts the operation).

free is called to inform the ID manager that the object labeled with ke i is about to go out of ds-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manRganning TRIE
(nonzero) in all cases means that the request succeeded (with a valid ID stored throughhesulre
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph filemnto a ne
ID. If the ID manager can complyen it stores the result and returndJER Itis then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FALSE but it must
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a uniguéDnef its own choosing.
Although it may return FALSE if it does not support ayroous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a namespace probe. If the name wagglyenapped into

an allocated ID by the ID managéren the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may storeyamnallocated ID into result. (This is ceenient, for example, if names

are known to be digit strings that are directlyvasted into 32 bit values.)

name == NULL and createflag == 0: forbidden.

print is allowed to return a pointer to a statidfer; a caller must cgpits value if needed past subsequent
calls. NULL should be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them waahgect callbacks.

struct Agiodisc_s {

int (*fread)(woid *chan, char *buf, int bufsize);
int (*putstr)(wid *chan, char *str);
int (*flush)(void *chan); [* sync */
[* error messages? */

H

struct Agmemdisc_s { /* memory allocator */
void *(*open)(void); /* independent of other resources */
void *(*alloc)(void *state, size_t req);
void *(*resize)(wid *state, void *ptrsize_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(wid *state);

H

EXAMPLE PROGRAM
#include <graphviz/cgraph.h>
typedef struct mydata_s {Agrec_t hdr; int x,y,z;} mydata;

main(int argc, char **argv)
{
Agraph_t *g;
Agnode_t *v;
Agedge t *e;
Agsym_t *attr;
Dict t *d

30 JULY 2007 6

LIBCGRAPH(3) LIBCGRAPH(3)

int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
cnt = 0; attr = 0;
while (attr = agnxtattr(g, AGNODE, attr)) cnt++;
printf("The graph %s has %d attributes0,agnameof(g),cnt);

/* make the graph hee a rode color attribute, default is blue */
attr = agattr(g,AGNODE,"color","blue");

[* create a n& graph of the same kind as g */
h = egopen("tmp",g->desc);

/* this is a way of counting all the edges of the graph */
cnt =0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))
for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

/* attach records to edges */
for (v = agfstnode(g); v; v = agnxtnode(g,v))
for (e = agfstout(g,v); e; e; = agnxtout(g,e)) {
p = (mydata*) agbindrec(g,e,"mydata”,sizeof(mydata), TRUE);
p->x = 27; /* meaningless data access example */
((mydata*)(AGDATA(e)))->y = 999; /* another example */

EXAMPLE GRAPH FILES
digraph G {
a->h
¢ [shape=box];
a -> ¢ jweight=29,label="some text];
subgraph anything {
/* the following affects only x,y,z */
node [shape=circle];
a; X;y ->z;y->z; I*multiple edges */
}
}

strict graph H {
no -- nl -- n2 -- nO; /* a cycle */
n0--{abcd}; [*astar*
no -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */

}

SEE ALSO
Libcdt(3)

30 JULY 2007 7

LIBCGRAPH(3) LIBCGRAPH(3)

BUGS

It is difficult to change endpoints of edges, delete string attributes or modify eggeThework-around is
to create a ne object and cop the contents of an old one (butwnebject obviously has a different ID,
internal address, and object creation timestamp).

The API lacks covenient functions to substitute programmer-defined ordering of nodes and edges but in
principle this can be supported.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

30 JULY 2007 8

